

Motivations

- Extending the analysis provided in Garivier and Moulines [2011] to the contextual case
- Propose an analysis valid in both **abruptly** and slowly changing environments
- Building policies robust to changepoints in the distribution instead of detecting them

Non-Stationary Linear Bandits Setting

At time t, the learner has access to a **time**dependent finite set of arbitrary actions $A_t =$ $\{A_{t,1},\ldots,A_{t,K_t}\},$ where $A_{t,k} \in \mathbb{R}^d$.

They can only be probed one at a time, i.e., the learner

- Chooses an action $A_t \in \mathcal{A}_t$
- and observes only the noisy linear reward

$$X_t = A_t^\top \theta_t^\star + \eta_t$$

where η_t is a σ -subgaussian random noise

Specificity of the model

- Non-Stationarity θ_t^{\star} depends on t
- Unstructured action set

The dynamic regret is defined as

$$\mathbb{E}[R(T)] = \mathbb{E}\left(\sum_{t=1}^{T} \max_{a \in \mathcal{A}_t} \langle a - A_t, \theta_t^{\star} \rangle\right)$$

A key quantity for quantifying the non-stationarity is the **variation budget** defined as

$$\sum_{s=1}^{T-1} \|\theta_s^{\star} - \theta_{s+1}^{\star}\|_2 \le B_T$$

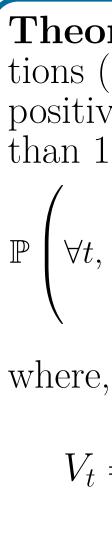
A large variation budget can be either due to large scarce changes of θ_t^{\star} or frequent but small deviations

Assumptions

- η_t is, conditionally on the past, σ -subgaussian
- Bounded actions: $\forall t \geq 1, \forall a \in \mathcal{A}_t, ||a||_2 \leq L$
- Bounded parameters: $\forall t \geq 1, \|\theta_t^{\star}\|_2 \leq S$
- $\forall t \geq 1, \forall a \in \mathcal{A}_t, |\langle a, \theta_t^{\star} \rangle| \leq 1$

It has the following closed form solution

In a stationary environment the following concentration result holds when using a weighted least squares estimator,



Then

WEIGHTED LINEAR BANDITS FOR NON-STATIONARY ENVIRONMENTS

CNRS, Inria, ENS, Université PSL, Deepmind*

Weighted least squares estimator

The usual least squares estimator is defined by,

$$\hat{\theta}_t^{OLS} = \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} \sum_{s=1}^t (X_s - A_s^{\top} \theta)^2 + \frac{\lambda}{2} \|\theta\|_2^2,$$

whereas, the weighted least squares estimator is defined by

$$\hat{\theta}_t = \underset{\theta \in \mathbb{R}^d}{\operatorname{arg\,min}} \sum_{s=1}^t w_s (X_s - A_s^\top \theta)^2 + \frac{\lambda_t}{2} \|\theta\|_2^2.$$

$$\hat{\theta}_t = \left(\sum_{s=1}^t w_s A_s A_s^\top + \lambda_t I_d\right)^{-1} \sum_{s=1}^t w_s A_s X_s.$$

 $\hookrightarrow \hat{\theta}_t$ is unchanged if all the weights $(w_s)_{s < t}$ and the regularization parameter λ_t are multiplied by a same constant α

Concentration Result

Theorem 1. Assuming that $\theta_t^{\star} = \theta^{\star}$, for any sequences of actions $(A_t)_{t>1}$ (predictable based on past actions and rewards) and positive weights $(w_t)_{t>1}$ and for all $\delta > 0$, with probability higher than $1-\delta$,

$$t, \|\hat{\theta}_t - \theta^\star\|_{V_t \widetilde{V}_t^{-1} V_t} \le \frac{\lambda_t}{\sqrt{\mu_t}} S + \sigma_{\sqrt{2\log(\frac{1}{\delta})}} + d\log\left(1 + \frac{L^2 \sum_{s=1}^t w_s^2}{d\mu_t}\right) \Big)$$

$$\widetilde{Y}_t = \sum_{s=1}^t w_s A_s A_s^\top + \lambda_t I_d \quad \text{and} \quad \widetilde{V}_t = \sum_{s=1}^t w_s^2 A_s A_s^\top + \mu_t I_d.$$

Extension for Non-Stationarity

We use particular weights of the form $w_s = \gamma^{-s}$ and particular regularization terms $\lambda_t = \lambda \gamma^{-t}$ and $\mu_t = \lambda \gamma^{-2t}$, where $0 < \gamma < 1$. A noiseless proxy value for θ_t^{\star} is defined as follow

$$\bar{\theta}_t = V_{t-1}^{-1} \left(\sum_{s=1}^{t-1} \gamma^{-s} A_s A_s^\top \theta_s^\star + \gamma^{t-1} \theta_t^\star \right)$$

Theorem 2. Let $\mathcal{C}_t = \{\theta \in \mathbb{R}^d : \|\theta - \hat{\theta}_{t-1}\|_{V_{t-1}\widetilde{V}_{t-1}^{-1}V_{t-1}} \leq \beta_{t-1}\}$ denote the confidence ellipsoid with

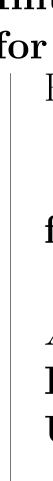
$$\beta_t = \sqrt{\lambda}S + \sigma \sqrt{2\log(1/\delta) + d\log\left(1 + \frac{L^2(1-\gamma^{2t})}{\lambda d(1-\gamma^2)}\right)}$$

$$\forall \delta > 0.$$

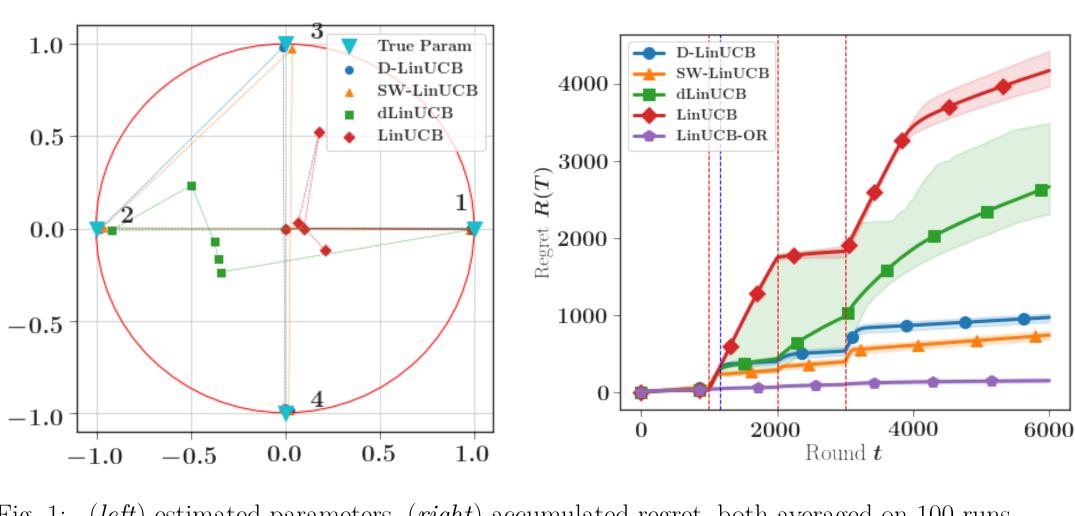
$$\mathbf{h},\,\forall\delta>0,$$

$$\mathbb{P}\left(\forall t \ge 1, \bar{\theta}_t \in \mathcal{C}_t\right) \ge 1 - \epsilon$$

High probability upper bound on the regret of D-LinUCB



$$\mathbf{E}\mathbf{x}$$



Yoan Russac, Claire Vernade^{*}, Olivier Cappé

Theorem 3. Assuming that $\sum_{s=1}^{T-1} \|\theta_s^{\star} - \theta_{s+1}^{\star}\|_2 \leq B_T$, the regret of the D-LinUCB algorithm may be bounded for all $\gamma \in (0, 1)$ and integer $D \geq 1$, with probability at least $1 - \delta$, by

$$R_T \le 2LDB_T + \frac{4L^3S}{\lambda} \frac{\gamma^D}{1-\gamma} T + 2\sqrt{2\beta_T} \sqrt{dT} \sqrt{T \log(1/\gamma)}$$

Algorithm

Algorithm 1: D-LinUCB **Input:** Probability δ , subgaussianity constant σ , dimension d, regularization λ , upper bound for actions L, upper bound for parameters S, discount factor γ .

Initialization: $b = 0_{\mathbb{R}^d}, V = \lambda I_d, V = \lambda I_d, \hat{\theta} = 0_{\mathbb{R}^d}$ for $t \ge 1$ do Receive \mathcal{A}_{t} , compute $\beta_{t-1} =$

$$\sqrt{\lambda}S + \sigma\sqrt{2\log\left(\frac{1}{\delta}\right) + d\log\left(1 + \frac{L^2(1 - \gamma^{2(t-1)})}{\lambda d(1 - \gamma^2)}\right)}$$

for $a \in \mathcal{A}_t$ do

Compute UCB(a) = $a^{\top}\hat{\theta} + \beta_{t-1} \|a\|_{V^{-1}\tilde{V}V^{-1}}$ $A_t = \arg \max_a(\text{UCB}(a))$

Play action A_t and **receive reward** X_t Updating phase:

 $V = \gamma V + A_t A_t^{\top} + (1 - \gamma) \lambda I_d,$ $\widetilde{V} = \gamma^2 \widetilde{V} + A_t A_t^{\top} + (1 - \gamma^2) \lambda I_d$

 $b = \gamma b + X_t A_t, \quad \theta = V^{-1}b$

periments

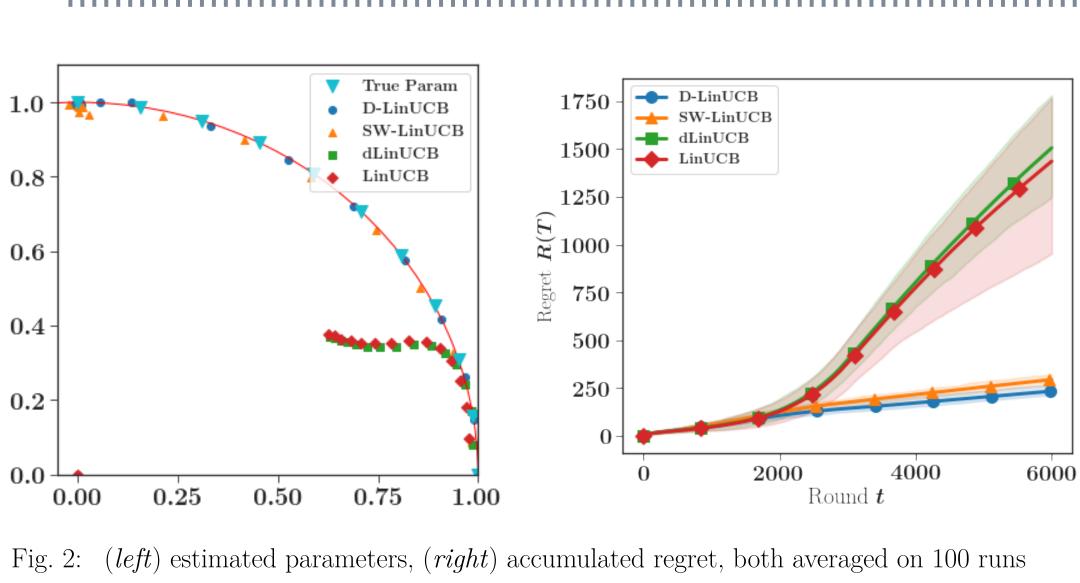
1. Synthetic data: K = 20, d = 2, L = 1, S = 1 and θ^{\star} is evolving over the experiment

2. Synthetic data based on a real world dataset.

We compare D-LinUCB with 1/ SW-UCB of Cheung et al. [2019], 2/ dLinUCB the changepoint detection method from Wu et al. [2018].

Abruptly changing environment

Fig. 1: (*left*) estimated parameters, (*right*) accumulated regret, both averaged on 100 runs



Asymptotic Upper Bound

Theorem 4. By choosing $\gamma = 1 - (B_T/(dT))^{2/3}$, the regret of the D-LinUCB algorithm is asymptotically upper bounded with high probability by $O(d^{2/3}B_T^{1/3}T^{2/3})$ when $T \to \infty$.

Conclusions and Remarks

O. Besbes, Y
stationary
pages 199-
W. C. Cheur
stationarit
and Stati.
A. Garivier a
dit problei
pages 174 -
Q. Wu, N. I
environme
& Develo

Slowly changing environment

• We assume that the variation budget is known all along this work. In Cheung et al. [2019], a first solution is presented to relax such hypothesis.

• Providing an algorithm with an upper bound matching the lower bound presented in Besbes et al. [2014] up to logarithmic terms.

References

. Gur, and A. Zeevi. Stochastic multi-armed-bandit problem with nonrewards. In Advances in neural information processing systems, -207, 2014.

ung, D. Simchi-Levi, and R. Zhu. Learning to optimize under nonty. In The 22nd International Conference on Artificial Intelligence *tistics*, pages 1079–1087, 2019.

and E. Moulines. On upper-confidence bound policies for switching banems. In International Conference on Algorithmic Learning Theory, -188. Springer, 2011.

Iver, and H. Wang. Learning contextual bandits in a non-stationary ent. In The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, SIGIR '18, pages 495–504, New York, NY, USA, 2018. ACM.