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Motivations

• Non-stationary environments: ubiquitous in real-world applica-
tions.

• Generalized Linear Models: broader rewards models of consid-
erable practical relevance (binary,categorical).

,→ Extension of forgetting strategies designed for linear bandits to
Generalized Linear Models.

Preliminaries

At time t , time-dependent finite set of arbitrary actions At = {At ,1, . . . , At ,Kt
},

where At ,k ∈Rd . After selection of at ∈At observation of a reward following:

E[rt+1|at] =µ(a>
t θ

?
t ), with µ the inverse link function,

Dynamic Regret:

RT =
T∑

t=1
max
a∈At

µ(a>θ?t )−µ(a>
t θ

?
t )

Maximum likelihood estimator: Solution of the convex program:

θ̂t = argmin
θ∈Rd

−
t−1∑
s=1

ws,t logPθ(rs+1|as)+λ

2
‖θ‖2

2 (1)

Forgetting policies: if ws,t = γt−1−s discounted policy and if ws,t = 1(t − s ≤ τ)
sliding window policy.

Assumptions

• Bounded actions and parameters: ∀t ≥ 1,∀a ∈At ,‖a‖2 ≤ 1, ‖θ?t ‖2 ≤ S.

• Bounded rewards: ∀t ≥ 1,0 ≤ rt ≤ m.

• Non-Stationarity: θ?t can change in an arbitrary fashion up to ΓT times.

• Self-Concordance:

|µ̈| ≤ µ̇

• For the inverse link fuction:

cµ := infθ:‖θ‖2≤S,a:‖a‖2≤1 µ̇(a>θ) > 0 " 1/cµ can be exponentially large in S!

Challenges and Approach

1) cµ limitation of the practical interest of Generalized Linear Bandits algo-
rithms. ,→ Reducing dependency in the cµ in non-stationary environments
,→ Extension of a Berstein-like inequality of [1] to weighted self-normalized
martingales.

2) MLE not necessarily bounded, existing algorithms require a complicated
projection step or a prohibitively long burn-in phase.
,→ Finer characterization of the MLE using self-concordance assumption.
Algorithm relying solely on this estimator without any projection

Concentration Result

To solve 1), switching from a global analysis featuring Vt =∑t
s=1 w 2

s,t asa>
s +λId to

a local analysis through Ht(θ) =∑t
s=1 w 2

s,tµ̇(a>
s θ)asa>

s +λId .

,→ How to handle the weights with a local analysis?

Theorem 1.
Let H̃t = ∑t−1

s=1 w 2
s µ̇(a>

s θ
?
s )asa>

s + λt−1Id , εs+1 = rs+1 − µ(a>
s θ

?
s ) and St =∑t−1

s=1 wsεs+1as, then for any δ ∈ (0,1],

P

‖St‖H̃−1
t
≤O

√
d log

(
t

δ

)≥ 1−δ .

,→ High probability upper-bound independent of cµ thanks to the local analysis!

Self-Concordance and MLE

Using a Taylor expansion and the self-concordance assumption, the authors in [1]
uses:

∀x, µ(x>θt) ≥µ(x>θ?)+ |x>(θ?−θt)|
1+2S

µ̇(x>θ?)

Here, tighter bound to solve 2),

∀x, µ(x>θ̂t) ≥µ(x>θ?)+ |x>(θ?− θ̂t)|
1+|x>(θ?− θ̂t)| µ̇(x>θ?)

µ(x) = 1/(1+exp(−x))

x 7→µ(a)+ x−a
1+|x−a| µ̇(a)

x 7→µ(a)+ x−a
1+2S µ̇(a)

a x

Comparison with Existing Works

Algorithm Setting Projection Regret Upper Bound

GLM-UCB [2] Stationary GLM Non-convex Õ
(
c−1
µc−1
µc−1
µ ·d ·pT

)
LogUCB1 [1] Stationary Logistic Non-convex Õ

(
c−1/2
µc−1/2
µc−1/2
µ ·d ·pT

)
D-GLUCB [3] Non-Stationary GLM Non-convex Õ

(
c−1
µc−1
µc−1
µ ·d 2/3 ·Γ1/3

T ·T 2/3
)

SC-D-GLUCB
Non-Stationary GLM

+ Gap Assumption
No projection Õ

(
c−1/2
µc−1/2
µc−1/2
µ ·d ·pΓT T

)
SC-D-GLUCB Non-Stationary GLM No projection Õ

(
c−1/3
µc−1/3
µc−1/3
µ ·d 2/3 ·Γ1/3

T ·T 2/3
)

Tab. 1: Comparison of regret guarantees for different algorithms in the GLM setting

Regret Upper Bound

Theorem 2. Setting γ= 1− (c1/2
µ ΓT /(dT ))2/3 and λ= d log(T ) leads to,

RT =O
(
c−1/3
µ d 2/3Γ1/3

T T 2/3
)

Adding an assumption on the gap, i.e. assuming that for all t and all suboptimal

a ∈At , µ(a>
t ,?θ

?
t )−µ(a>θ?) >∆ and setting γ= 1−

√
cµΓT

d 2T leads to,

RT =O
(
∆−1c−1/2

µ d
√
ΓT T

)
Algorithm

Algorithm 1: SC-SW-GLUCB
Input: Probability δ, dimension d , regularization λ, upper bound for

parameters S, sliding window length τ.
Initialization: V =λ/cµId , θ̂ = 0Rd

for t ≥ 1 do
Receive At , compute θ̂t according to Eq. (1) and βt according to Eq. (??)

Play action at = argmaxa∈At
µ(a>θ̂t)+ βδ

tp
cµ
‖a‖V −1

t

Receive reward rt+1

Updating phase:
if t < τ then

Vt+1 ← at a>
t +Vt

else
Vt+1 ← at a>

t −at−τa>
t−τ+Vt

Experiments in Abruptly Changing Environments

Fig. 1: Regret of the different algorithms in a 2D abruptly changing environment averaged on 200 independent

experiments and the 25% associated quantiles. (left) c−1
µ = 400, (right) c−1

µ = 1000
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