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Motivations Concentration Result Regret Upper Bound

* Non-stationary environments: ubiquitous in real-world applica- To solve 1), switching from a global analysis featuring V, = Y.!_, w5 ,asa] + A, to

: RY?: 2/3 _
tions. alocal analysis through H,(0) = Y_;_, w? fi(a, 0)asa; + A1, Theorem 2. Settingy =1—(c,“I'r/(dT))”” and A = dlog(T) leads to,

Ry =0 (C;tl/?’dZ/PTIT/?’ T2/3)

Adding an assumption on the gap, i.e. assuming that for all ¢ and all suboptimal
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e Generalized Linear Models: broader rewards models of consid- — How to handle the weights with a local analysis?

erable practical relevance (binary,categorical).
— Extension of forgetting strategies designed for linear bandits to
Generalized Linear Models.

Theorem 1.
Let H, = Y'oiw?a(al0Nasal + 1,11y, €51 = 1o — w(al0) and S; =
Il wse, 1 a,, then for any 6 € (0, 1],
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At time ¢, time-dependent finite set of arbitrary actions </, = {A;1,..., Arx.},
where A; ;. € R®. After selection of a, € <, observation of a reward following:

Algorithm

— High probability upper-bound independent of ¢, thanks to the local analysis!

Self-Concordance and MLE

Algorithm 1: SC-SW-GLUCB
Input: Probability 6, dimension d, regularization A, upper bound for

parameters S, sliding window length 7.

E[r;iqla;] = ,u(a;rHZ‘), with u the inverse link function,

Dynamic Regret: s Initialization: V = A/c 1, 0 = Oga
Ry = Z max a’ 9:) — atT 0;) Using a Taylor expansion and the self-concordance assumption, the authors in [1] for r=>1do )
=1 A€ uses: S Receive «f;, compute 0; according to Eq. (1) and (6, according to Eq. (2?)
Maximum likelihood estimator: Solution of the convex program: Y x, ,u(xTH ) = ,u(xTQ*) + ¢ §H+ Z_SHt ) ,a(xTH*) Play action a, = argmax o, ,u(aTé )+ ﬁz_ull ally-
r—1 .
6, = argerﬂglin — ; ws (logPo(rsirlas) + %ll@ 15 (1) Here, tighter bound to solve 2), o E;(:;’ien;e:}::efm
Forgetting policies: if w;; = y'~1=% discounted policy and if Ws;=1(t—s=<71) YV x, ,u(xTét) > ,u(xTH*) + x (07 -0 ,L't(xTH*) it £ <7 then

sliding window policy.

Assumptions

* Bounded actions and parameters: Vi = 1,Vae of,, |lall, <1, |67, <S.
e Bounded rewards: Vi=1,0<r, < m.
* Non-Stationarity: 67 can change in an arbitrary fashion up to I'; times.
e Self-Concordance:
il = p
e For the inverse link fuction:

¢, := infg. g,<s.a:1a1,<1 (@' ) >0  /\ 1/c, can be exponentially large in S!

Challenges and Approach

1) ¢, limitation of the practical interest of Generalized Linear Bandits algo-
rithms. — Reducing dependency in the ¢, in non-stationary environments
— Extension of a Berstein-like inequality of [1] to weighted self-normalized
martingales.

2) MLE not necessarily bounded, existing algorithms require a complicated
projection step or a prohibitively long burn-in phase.
— Finer characterization of the MLE using self-concordance assumption.
Algorithm relying solely on this estimator without any projection
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Comparison with Existing Works

Algorithm Setting Projection Regret Upper Bound

6(czt-d-VT)
Gcz?d-V/T)
D-GLUCB [3] Non-Stationary GLM Non-convex 5(cﬁl-d2/3-F1T/3-T 2/3)

GLM-UCB [2] Stationary GLM Non-convex

LogUCBI [1] Stationary Logistic Non-convex

Non-Stationary GLM
+ Gap Assumption

SC-D-GLUCB Non-Stationary GLM No projection 9 (cﬁlls.d2/3,r1T/3, Tz/g)

SC-D-GLUCB No projection @ (c;”z .d- \/FTT)

Tab. 1: Comparison of regret guarantees for different algorithms in the GLM setting
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Experiments in Abruptly Changing Environments
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Fig. 1: Regret of the different algorithms in a 2D abruptly changing environment averaged on 200 independent

experiments and the 25% associated quantiles. (left) c;tl =400, (right) cljl = 1000
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