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Stochastic K -armed Bandits

K unknown reward distributions called arms
Learner sequentially collects rewards and update her policy
Objective: minimize the regret ⇐⇒ maximize the expected sum of
rewards

Settings considered in this paper

Stationary arms (fixed at the start)
Abruptly changing environments: arms are stationary between
breakpoints.

We study the Last-Block Subsampling Dueling Algorithm (LB-SDA)
proposed in [Baudry et al., 2020] in these two settings.
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Last Block Subsampling Dueling Algorithm (LB-SDA)

Main idea: different number of rewards collected for each arm, comparing the
means is sub-optimal (greedy).
→ Comparing means of sub-sample of same size = fair comparison!

A round-based approach
1. Choose a leader : arm with largest number of observations!
2. Perform K − 1 duels: leader vs each challenger .
3. Draw a set of arms: winning challengers (if any) or leader (if none).

Index used for an arm in a duel
Challenger → empirical mean (full sample size Nk).
Leader → mean of the subsample of its Nk last observation (last block).
Winner: arm with the largest index!
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Limiting the memory with LB-SDA-LM

Practical advantages of LB-SDA
Fully non-parametric: same algorithm for all distributions
Fast to compute:
I O(1) most often (sequential update of the means)
I O(logT ) when leader changes (re-computing the means)

Drawback (shared by all subsampling algorithms)
Storage of all T observations is required.
Is it necessary ? → In practice only O(log T ) are actually used.

Idea
Store mt = O((log t)2) rewards for each arm at round t → LB-SDA-LM.
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Properties
Theorem (Asymptotic Optimality of LB-SDA and LB-SDA-LM)
LB-SDA and LB-SDA-LM are both asymptotically optimal (see
[Lai and Robbins, 1985]) when arms belong to the same Single-Parameter
Exponential Family

→ for any Single-Parameter Exponential Family , unknown by the learner!

Table: Storage/computational cost at round T for some subsampling algorithms.

Algorithm Storage Comp. cost: Best-Worst case

SSMC
[Chan, 2020] O(T ) O(1)-O(T )

RB-SDA
[Baudry et al., 2020] O(T ) O(logT )

LB-SDA O(T ) O(1)-O(logT )

LB-SDA-LM O((logT )2) O(1)-O(logT )
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Abruptly Changing Environments: SW-LB-SDA

Sliding Window LB-SDA
Natural adaptation of LB-SDA with a sliding window of size τ
Additional mechanism to ensure sufficient exploration
Non-parametric nature ⇒ potential for new settings

Theorem (Asymptotic optimality of SW-LB-SDA)

If the time horizon T and the number of breakpoints ΓT are known, choosing
τ = O(

√
T log(T )/ΓT ) ensures that the dynamic regret of SW-LB-SDA

satisfies
RT = O(

√
T ΓT log T ) .
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Example of application with Gaussian arms

Figure: Performance on a Gaussian instance with time-dependent means and
standard deviations averaged on 2000 independent replications.

→ SW-LB-SDA naturally adapts to the variance changes!
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Thank you !
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