On Limited-Memory Subsampling Strategies for Bandits

Dorian Baudry^{*,1}, Yoan Russac ^{*,2}, Olivier Cappé²

* Equal contribution CNRS, Univ. Lille, CNRS, Inria & Université de Lille, France ² DI ENS, CNRS, Inria

Stochastic K-armed Bandits

- K unknown reward distributions called arms
- Learner sequentially collects rewards and update her policy
- Objective: minimize the *regret* ⇔ maximize the expected sum of rewards

Settings considered in this paper

- Stationary arms (fixed at the start)
- Abruptly changing environments: arms are stationary between breakpoints.

We study the Last-Block Subsampling Dueling Algorithm (LB-SDA) proposed in [Baudry et al., 2020] in these two settings.

Last Block Subsampling Dueling Algorithm (LB-SDA)

Main idea: different number of rewards collected for each arm, comparing the means is sub-optimal (greedy).

 \rightarrow Comparing means of sub-sample of same size = fair comparison!

A round-based approach

- 1. Choose a *leader*: arm with largest number of observations!
- 2. Perform K 1 duels: leader vs each challenger.
- 3. Draw a set of arms: winning challengers (if any) or leader (if none).

Index used for an arm in a duel

- Challenger \rightarrow empirical mean (full sample size N_k).
- Leader \rightarrow mean of the *subsample* of its N_k last observation (last block).
- Winner: arm with the largest index!

Limiting the memory with LB-SDA-LM

Practical advantages of LB-SDA

- Fully non-parametric: same algorithm for all distributions
- Fast to compute:
 - $\mathcal{O}(1)$ most often (sequential update of the means)
 - $\mathcal{O}(logT)$ when leader changes (re-computing the means)

Drawback (shared by all subsampling algorithms)

Storage of all *T* observations is required.
Is it necessary ? → In practice only O(log *T*) are actually used.

Idea

Store $m_t = O((\log t)^2)$ rewards for each arm at round $t \to \text{LB-SDA-LM}$.

Properties

Theorem (Asymptotic Optimality of LB-SDA and LB-SDA-LM)

LB-SDA and LB-SDA-LM are both asymptotically optimal (see [Lai and Robbins, 1985]) when arms belong to the same Single-Parameter Exponential Family

 \rightarrow for any Single-Parameter Exponential Family , unknown by the learner!

Table: Storage/computational cost at round T for some subsampling algorithms.

Algorithm	Storage	Comp. cost: Best-Worst case
SSMC [Chan, 2020]	<i>O</i> (<i>T</i>)	<i>O</i> (1)- <i>O</i> (<i>T</i>)
RB-SDA [Baudry et al., 2020]	<i>O</i> (<i>T</i>)	$O(\log T)$
LB-SDA	<i>O</i> (<i>T</i>)	$O(1)$ - $O(\log T)$
LB-SDA-LM	$O((\log T)^2)$	$O(1)$ - $O(\log T)$

Abruptly Changing Environments: SW-LB-SDA

Sliding Window LB-SDA

- \blacksquare Natural adaptation of LB-SDA with a sliding window of size τ
- Additional mechanism to ensure sufficient exploration
- Non-parametric nature \Rightarrow potential for new settings

Theorem (Asymptotic optimality of SW-LB-SDA)

If the time horizon T and the number of breakpoints Γ_T are known, choosing $\tau = O(\sqrt{T \log(T)/\Gamma_T})$ ensures that the dynamic regret of SW-LB-SDA satisfies

$$\mathcal{R}_T = O(\sqrt{T\Gamma_T \log T}) \; .$$

Example of application with Gaussian arms

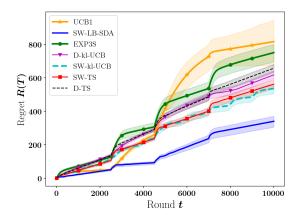


Figure: Performance on a Gaussian instance with time-dependent means and standard deviations averaged on 2000 independent replications.

 \rightarrow SW-LB-SDA naturally adapts to the variance changes!

Baudry, D., Kaufmann, E., and Maillard, O.-A. (2020). Sub-sampling for efficient non-parametric bandit exploration. Advances in Neural Information Processing Systems, 33.

Chan, H. P. (2020).

The multi-armed bandit problem: An efficient nonparametric solution. The Annals of Statistics, 48(1):346–373.

Lai, T. L. and Robbins, H. (1985).

Asymptotically efficient adaptive allocation rules. Advances in applied mathematics, 6(1):4–22.

Thank you !

