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Motivations

• Bandit algorithms using subsampling have strong empirical performance for a
broad family of distributions but existing works require storing the entire his-
tory of rewards [1, 2].

,→ We reduce the storage constraint by limiting the memory while maintain-
ing the theoretical guarantees.

• Non-stationary environments: ubiquitous in real-world applications, and sub-
sampling algorithms have never been applied to this setting.

Setting

• K unknown reward distributions called arms.

• The learner sequentially collects rewards and update her policy.

• Objective: Minimizing the regret

Two different settings considered:

1. Stationary setting: the reward distributions are fixed.

2. Abruptly changing environment: the rewards distributions are
stationary between breakpoints. We consider the dynamic regret

RT = E

[
T∑

t=1
(µ?t −µAt

)

]
.

Subsampling Ideas: LB-SDA Algorithm

Different number of rewards collected for each arm, a simple comparison of the
means is sub-optimal (greedy algorithms)

,→ Comparing means of subsamples of the same size = fair
comparison !

A round-based approach:

• Choose a leader: the arm with the largest number of observations!

• Perform K −1 duels: leader vs each challenger.

• Drawing a set of arms based on the outcomes: winning challengers (if any) or
leader (if none).

Subsampling index

• For a challenger: empirical mean (full sample size Nk for challenger k).

• For the leader: mean of the subsample of its last Nk observation in the duel
with challenger k: simple and efficient subsampling method!

,→ The winner is the arm with the largest index.

Limiting the memory: from LB-SDA to LB-SDA-LM

LB-SDA has some advantages:

• Fully non-parametric algorithm: the same algorithm can be used for different
reward distributions.

• Computationally efficient: O (1) most often (for the sequential update of the
means), O (logT ) when the leader changes.

Drawback: Storage of all T observations required

,→ We design LB-SDA-LM (Limited Memory) to solve this issue.

• Store only mt =O ((log t )2) rewards for each arm at round t .

• If capacity exceeded, replace oldest observations by the newest.

Theorem 1. In any stationary environments, LB-SDA and LB-SDA-LM are both
asymptotically optimal (their regret matches the Lai & Robbins Lower Bound)
when the K arms belong to the same Single-Parameter Exponential Family.

Comparison with existing works:

Algorithm Storage Comp. cost (Best-Worst case)

BESA [1] O(T ) O((logT )2)

SSMC [3] O(T ) O(1)-O(T )

RB-SDA [2] O(T ) O(logT )

LB-SDA (this paper) O(T ) O(1)-O(logT )

LB-SDA-LM (this paper) O((logT )2) O(1)-O(logT )

Tab. 1: Storage and computational cost at round T for existing subsampling algorithms

Empirical validation

Fig. 1: Cost of storage limitation on a Bernoulli instance.

Non-Stationary Environments: Additional Challenges

General Idea: Combining subsampling ideas with a sliding-window technique.

• Additional mechanisms to ensure sufficient exploration.

• Non-parametric nature of the algorithm: new settings for non-stationary envi-
ronments with evolving variances and evolving means.

Theorem 2. If the time horizon and the number of breakpoints ΓT are known,
for any abruptly changing environment where for each stationary period the
arms comes from the same Single-Parameter Exponential Family, by choosing
τ=O (

√
T log(T )/ΓT ) the dynamic regret of SW-LB-SDA satisfies:

RT =O

(√
TΓT logT

)

Experiments in Abruptly Changing Environments

Fig. 2: Performance on a Gaussian instance with a constant standard deviation of σ= 0.5 averaged on 2000

independent runs.
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