Motivations

 Bandit algorithms using subsampling have strong empirical perf broad family of distributions but existing works require storing tory of rewards [1, 2].

- \hookrightarrow We **reduce the storage constraint** by limiting the memory wl ing the theoretical guarantees.
- Non-stationary environments: ubiquitous in real-world applicat sampling algorithms have never been applied to this setting.

Setting

• *K* unknown reward distributions called *arms*.

- The learner sequentially collects rewards and update]
- Objective: **Minimizing the regret**

Two different settings considered:

- 1. **Stationary** setting: the reward distributions are fixed.
- 2. Abruptly changing environment: the rewards distri stationary between *breakpoints*. We consider the **dyn**

$$\mathscr{R}_T = \mathbb{E}\left[\sum_{t=1}^T (\mu_t^{\star} - \mu_{A_t})\right].$$

Subsampling Ideas: LB-SDA Algorithm

Different number of rewards collected for each arm, a simple com means is sub-optimal (greedy algorithms)

\hookrightarrow Comparing means of subsamples of the same size comparison!

A *round-based* approach:

- Choose a leader: the arm with the largest number of observation • Perform K - 1 duels: leader vs each challenger.
- Drawing a set of arms based on the outcomes: winning challeng leader (if none).

Subsampling index

- For a challenger: empirical mean (full sample size N_k for challen
- For the leader: mean of the subsample of its last N_k observation with challenger k: simple and efficient subsampling method!

ON LIMITED-MEMORY SUBSAMPLING STRATEGIES FOR BANDITS Dorian Baudry^{*,1,2}, Yoan Russac^{*,1,3}, Olivier Cappé^{1,3} ¹CNRS, Inria, ² Université de Lille, ³ENS, Université PSL, * Equal Contribution

	Limiting the memory: from LB-SDA to LB-SDA-LM					
formance for a the entire his-	LB-SDA has some advantages: • Fully non-parametric algorithm: the same algorithm can be used for di				different	
hile maintain-	reward distributions. • Computationally efficient: $\mathcal{O}(1)$ most often (for the sequential update of the					
tions, and sub-	means), $\mathcal{O}(\log T)$ when the leader changes.					
	<u>Drawback</u> : Storage of all <i>T</i> observations required					
		C		Memory) to solve this issue.		
	• Store only $m_t = \mathcal{O}((\log t)^2)$ rewards for each arm at round <i>t</i> .					
	• If capacity exceeded, replace oldest observations by the newest.					
her policy.	asymptotically	optimal (their i	egret matcl	its, LB-SDA and LB-SDA-LM and the Lai & Robbins Lower e-Parameter Exponential Fam	Bound)	
	Comparison wit	h existing works	• •			
ibutions are	A	Algorithm		Comp. cost (Best-Worst case	<u>e)</u>	
amic regret	ł	BESA [1]		$O((\log T)^2)$		
	S	SSMC [3]		O(1)-O(T)		
	RI	RB-SDA [2]		$O(\log T)$		
	LB-SD	LB-SDA (this paper)		$O(1)$ - $O(\log T)$		
	LB-SDA-	LB-SDA-LM (this paper)		$O(1)$ - $O(\log T)$		
parison of the						
ze = fair	Empirical	validation				
	35 - 30 -	UCB1 LB-SDA-LM LB-SDA				
ns!	50	•••• kl-UCB				
gers (if any) or		TS				
Sero (II arry) or	$(\mathbf{L}) \mathbf{R} = \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I}$					
(a r k)	ස් 10 -					
nger k). On in the duel						
	5 - 0 -					
	÷					

Fig. 1: Cost of storage limitation on a Bernoulli instance.

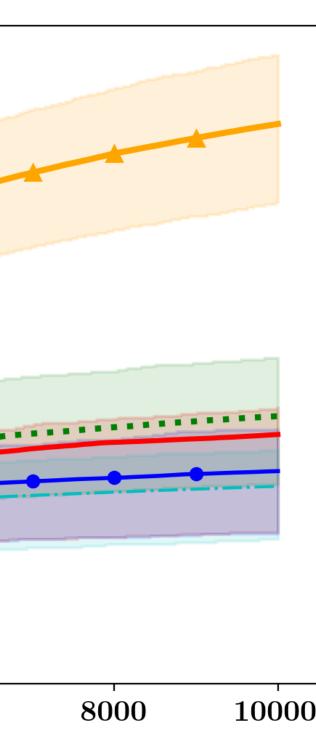
2000

0

A to LB-SDA-LM

y) to solve this issue.

cost (Best-Worst case)



Non-Stationary Environments: Additional Challenges

General Idea: **Combining** subsampling ideas with a **sliding-window** technique.

- Additional mechanisms to ensure sufficient exploration.
- ronments with **evolving variances** and evolving means.

Theorem 2. If the time horizon and the number of breakpoints Γ_T are known, for any abruptly changing environment where for each stationary period the arms comes from the same Single-Parameter Exponential Family, by choosing $\tau = \mathcal{O}(\sqrt{T\log(T)/\Gamma_T})$ the dynamic regret of SW-LB-SDA satisfies:

 $\mathscr{R}_T = \mathscr{O}\left(\sqrt{T\Gamma_T \log T}\right)$

Experiments in Abruptly Changing Environments

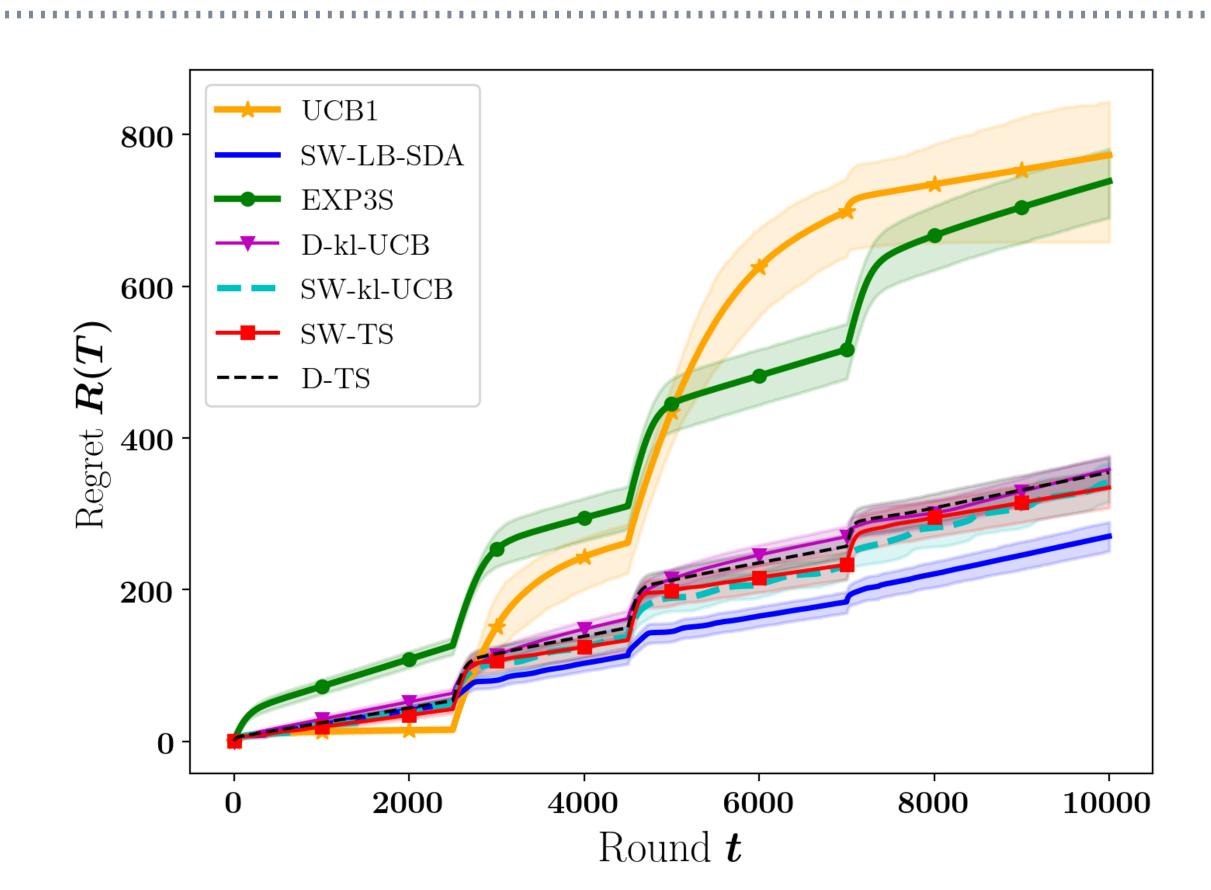
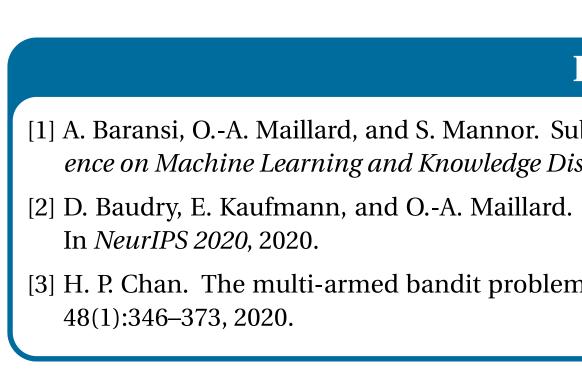


Fig. 2: Performance on a Gaussian instance with a constant standard deviation of $\sigma = 0.5$ averaged on 2000 independent runs.



6000

Round t

• Non-parametric nature of the algorithm: new settings for non-stationary envi-

References

[1] A. Baransi, O.-A. Maillard, and S. Mannor. Sub-sampling for multi-armed bandits. In Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pages 115–131. Springer, 2014. [2] D. Baudry, E. Kaufmann, and O.-A. Maillard. Sub-sampling for efficient non-parametric bandit exploration.

[3] H. P. Chan. The multi-armed bandit problem: An efficient nonparametric solution. The Annals of Statistics,