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Problem Different modes of interaction with the subpopulations
e A/B/n testing compares multiple website versions (called arms) to determine 1. Pick A, 1. Pick A, 1. See I; ~ o 1 Pick A, and I
the one with the highest conversion. | ' ' !
2. Don'tsee I; ~ 2. See I, ~ a 2. Pick 4, 2. See X; ~va,
e Online firms deploy the arms that satisty multiple constraints (cost, strategy, ' g b
3. See X; ~ VA, I, 3. See X; ~ VA, I 3. See X; ~ VA, I,

etc.), as long as it is better than the baseline, the control arm.

e All Arms Better than the Control (ABC)
#+ Best arm identification (BAI)
+ Better than a Threshold

0o 1 2 3

Figure 1: For the ABC problem we need to sample more arms 0 and 2, for the BAI problem we
need to sample more 1 and 3 and for thresholding bandit we need to sample more 2 (control mean is
Known).
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Theoretical guarantees

Complexity of the learning problems

For any strategy, the expected number of rounds for the ABC-S problem satisfies
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By remarking that Cagnostic C Cprop C Cactive, It holds that

Vi€ L, Tive(pt) < proporhonal(:u) < T;gnostlc(ﬂ) : (2)
When o = 3, for a safely calibrated oblivious policy, we further have
Vi € L, T;gnostlc(l‘) < Tobiivious (1) - (3)

Track-and-Stop Algorithm

Challenge

We aim to optimise adaptively:
1. the allocation of options to users

Limitations of conventional A/B/n:
1. Uniform allocation of options to
users is inefficient

2. Pre-determined experiment
duration can be conservative

2. the stopping time of the A/B/n
experiment

— Traditional stochastic bandits assume that the arm samples are 1.i.d., whereas
real world data exhibit inhnomogeneity, for instance seasonality patterns.

Fort > 1:

e Sampling rule: given the current estimates

1. estimate the target weights w;,

active:

2. pick arm < proportional:

agnostic:

(A, I;) € argmax,,
A, e argmax, N, 1, (t — 1) — tar, we(ally)
Ay € argmax, N,(t — 1) — twy(a)

’Z-Na,z-(t — 1) — twy(a, 1)

e Recommendation: S(f;) = {a € {1,..., K} : ,(t) > fo(t)} at confidence
level 0; = min{é € (0,1)|A(t) > 5(t,0)}, obtained by inverting the threshold
B(t,0) at the GLR statistic
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e Calibration: For 5(¢,0) = 6JInlnt+1In 3+ + K +2J-O(lnln 3), Track-and-Stop
IS safely calibrated.

Ve L, V6 € (0,1), IPPL(thl:St#S(u) 8 Stg(s)ga. (5)

Objective

Numerical Results

Real Data Experiment: Booking.com webpage data

Identify the set of Arms that are Better than the Control in the presence of Sub-
populations (ABC-S):
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In the fixed confidence setting, i.e. for any risk level 6 the probability of returning

an incorrect answer must be <.

Sp(p) = &

The user at time ¢ belongs to a subpopulation I; € {1,...,J}

e «; IS the natural proportion of subpopulation 2

® (i, ;IS the mean reward of arm a for the i-th subpopulation

e 3 = (B;)i=1....5 are known user-defined population weights defining the

value of an arm
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(Left) Risk assessment calibration on a log-log scale.

old In((1 4+ Int)/d) works well.
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The experiment compares K = 2 copies of a component of the webpage against
the baseline. Both copies are better than the control. Due to global traffic, the
data exhibits seasonality patterns within a day. We treat the J = 4 seasons as
I.1.d. subpopulations.




