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Stochastic Bandit Model

vy

Setting:
m K arms. Each arm associated with an unknown distribution
v, with mean p,

m action A; € {1, ..., K} is chosen at time ¢ based on previous
observations and rewards

m reward X; observed

X = pa, +€ (e centered noise)

w a* = argmax,eqy, . g} Ma



Specificity of Bandit Models

m Sequential Learning: learning on the fly

m Incomplete information: at time ¢ we don't know the rewards
we would have obtained by selecting a different arm

m Difference with General Reinforcement Learning: choosing an
action does not impact the state of the environment



Stochastic Bandit Model: Mesure of performance

Objective: maximize the expected sum of the rewards or
equivalently minimizing the regret

N, (t): number of times the arm a has been pulled up to time ¢
Ay = pigx — g sub-optimality gap of arm a

Regret of an algorithm A on a bandit instance v:

R(T) = T/La* —E

K
=Y ALE[N.(T)]
a=1



Strategy with small regrets

How to design a strategy with a small regret ?
K

R(T) = Z Aa]E[Na(T)]
a=1

— Not selecting too frequently the arms where A, > 0

Problem: The p, are unknown, so A, is unknown ! Need to try all
the arms to estimate A,’s

— Exploration - Exploitation trade-off



Stochastic Multi Armed Bandits

Exploration and Exploitation

= Naive idea for exploration: Select each arm T'/K times

m Naive idea for exploitation: Select the arm with the best
empirical mean: A; = argmax,cqq, . g} fla(t), where

t—1
ﬂa(t) = m S:ZlXS]l(AS = CL)

— Linear regret !



Stochastic Multi Armed Bandits

Optimism in the face of uncertainty

m For each arm build a confidence interval on the mean p,

RN

Figure: Confidence interval for the different arms at time ¢

m Act as if the best possible model is the true model

— Select the arm

A; = argmax UCB;_1(a)
a={1,...,K}



UCB(«) algorithm

Under the assumption of Gaussian rewards,

alog(t)
Na(t - 1)

Problem dependent Bound [Auer et al. 2002]

UCB(«) with @ = 2 and gaussian rewards with variance 1, satisfies

UCBi(a) = fia(t) +

atar ¢ a=1

K
R(T) <8 (Z Ai) log(T) + (1+72/3) 3" A,



UCB(«) algorithm

Sometimes we prefer problem independent bounds.

e(K,G)={v=(n,..vkg)whereVie {1,.... K}, v, =
N(Mi? 1)7With Hi € [07 1]}

Problem independent Bound

If § = 5, the regret of UCB(a) with v = 2 on any bandit instance
in (K, G) is bounded by

R(T) < 4/KTlog(T) + (1 + %/3)
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Contextual bandits

Use case: Recommender system

m At time ¢ a user arrives on a website with some characteristics

m Several items with some characteristics could be
recommended to the user

m For each item a context A € R? is build based on the user
features + item features. Those contexts form a set A;

m By choosing a context A the associated product is displayed
to the user

m A reward Xy depending on A, is then observed

Xt = f(A) + &



Contextual bandits

How to specify f7

m Linear Models: 36*, X; = A;'—H* + €
m Generalized Linear Models 30*, X; = u(A; 0*) + ¢
< 1 is called inverse link function

In this talk we focus on Linear Models



Linear Bandits Setting

In round t a set of /" actions Ay = {A¢1, ..., Ay k } is available

By selecting the context A;, one observes the reward

Xt:A;re*‘Fét

Assumption on the noise: ¢; are supposed to be i.i.d and
normally distributed € ~ N(0,1)

Bounded Actions
Bounded 6*

Best action at time ¢:

Af = argmaxa ' 0*
acAy



Difference with the Stochastic Bandit Model

m In the Stochastic Bandit Model the arms are independent

m The Linear Bandit model is a structured bandit problem: The
rewards of each arm are connected by a common unknown
parameter 6*

< Learning transfer from one context to another



Goal

Regret Minimization

T

T
max [E (Z Xt) <= min E

t=1
T
in E — A, 0%
<= min (Zmax(a £ >>

ac
t=1 !



How to choose an action A; at time ¢ to minimize the regret ?



Estimating the unknown parameter 6*

m Say we already played ¢ — 1 rounds where the actions
Aq,...., A4_1 have been selected and the rewards X1, ...
have been collected

m How to estimate 6* based on those observations?
— Regularized Least-Squares Estimator

t—1

A A
0; = argmin Z(XS — A0 4+ 2|03
(23— 2
= Closed form solution: f; = V,~} 2071 A, X, where

t—1
Vi =) AA] +

s=1



Link with the Linear Regression

= Closed form solution 6, = (Zz;ll AGAl + 27T 22;11 As X

m For A = 0 we find the usual estimator for the Linear
Regression (X ' X)~!X Y, where X is the matrix containing
the data of up time ¢t — 1 and Y is the associated reward
vector



Optimism in the face of uncertainty

m Acting as if the environment is as nice as plausibly possible

m In the stochastic bandit model it means selecting the action
with the largest Upper Confidence Bound

m In the Linear Model, the form of the confidence bound is more
complicated because rewards received give information about
more than just the arm played.

< Constructing a confidence set C; € R® that contains the
unknown parameter 0* with high probability given the
observations available up to time t — 1



Exploration /Exploitation dilemna and Linear Bandits

m Greedy Policy: Chooses the action A; that maximizes

A; = arg max a' b,
ac€A;

— not enough exploration

m Linear Upper Confidence Bound algorithm (LinUCB): Chooses
the action A; that maximizes

A; = argmaxmax a' 0
aE.At 9€Ct

with a particular C;



How to choose the confidence ellipsoid ?

Let 5:(0) = A+ \/2 log(1/6) + dlog (1 + ). The confidence
ellipsoid is defined as:

C(8) = {0 €R: 0 — bullv;_, < Bi-1(6)}

Theorem

C(0) is a confidence set for 6* at level 1 — 4,
Vo> 0,P(Vt>1,0"€C(6)>1-6
m With this choice of confidence ellipsoid the previous
optimization program is equivalent to maximizing

Ay = arg max (aTét + 576—1(&”“”‘/*)
a€As o



LinUCB

Algorithm 1: LinUCB

Input: Probability d, dimension d, regularization A.
Initialization: b = Oga, V = Ay, 6 = Opa
fort>1do

Receive A;, compute

Bio1 = VA+ \/2log (%) + dlog (1 + %)
for a € A; do
| Compute UCB(a) = a0+ Bi_1Va V-1la
A; = argmax,(UCB(a))
Play action A; and receive reward X,
Updating phase: V =V 4 A A]
b=b+ XtAt
0=v""p




LinUCB

Regret of LinUCB

Under the previous assumptions, with probability 1 — § the regret
of LinUCB satisfies

Ry < \/ﬁ\/sﬁT(é) log (1 + TA—?) = O0(dVT)

— Independent of the number of actions K
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Linear Bandits Setting

m Inround t a set of K actions A; = {A¢1, ..., Ay k' } is available
m By selecting the context A;, one observes the reward
Xt = A;rez( + €t
m Assumption on the noise: ¢; are supposed to be i.i.d and
normally distributed e, ~ N(0,1)
m Bounded Actions
= Bounded 0;

Best action at time ¢:

Af = argmaxa ' 0F
acAy



Optimality Criteria

Dynamic Regret Minimization

max [E (Z Xt) <= min E

T T
Zmax a,d;) — ZXt]

t=1 ac t=1
T

<= min E max(a — Ay, 0F

(Z ac€A: b >

dynamic regret



Our Approach

We only focus on robust policies

With that in mind, the non-stationarity in the 6 parameter is
measured with the variation budget

T-1
D N0r =050l < Br
s=1

— A large variation budget can be either due to large scarce
changes of 6} or frequent but small deviations



Weighted Least Squares Estimator

Least Squares Estimator

¢
A A
; = arg min E (X, — AJ0)% + Z2)10)I%
feR? 5T 2
s=1

Weighted Least Squares Estimator

t
p A
0,5 = argminzws(Xs - A;I'e)2 + é“e”%
OER s=1



The Case of Exponential weights

Exponential Discount (Time-Dependent Weights)

t
. , s A
f; = arg min E 77 (X, — A]6)? + 5“9”%

PcRd ' _
s=1 Wi



D-LinUCB Algorithm (1)

Algorithm 2: D-LinUCB

Input: Probability §, dimension d, regularization A, discount
factor ~. B

Initialization: b = Oga, V = My, V = M, 0 = Oga

fort>1 do

Receive A;, compute

Bio1 = VA + \/210g (%) + dlog (1 + %)
for a € A; do
‘ Compute UCB(a) = a0+ B;_1Va V-1V V - 1q
A; = argmax,(UCB(a))
Play action A; and receive reward X;
Updating phase: V =V + 4, A] + (1 —~)AIy,
V=9V + AA + (1 -2y




Roadmap

Empirical Performances



Empirical Performances

Performance in Abruptly-Changing Environment
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Figure: Performances of the algorithms in the abruptly-changing
environment. The plot on the left correspond to the estimated parameter
and the one on the right to the accumulated regret, averaged on

N =100 independent experiments



Empirical Performances

Performance in Slowly-Changing Environment
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Figure: Performances of the algorithms in the slowly-varying environment.
The plot on the left correspond to the estimated parameter and the one
on the right to the accumulated regret, averaged on N = 100

independent experiments



Empirical Performances

Thank you !



Empirical Performances

Concentration Result in Stationary Environments

Theorem 1

Assuming that 07 = 0%, for any F;-predictable sequences of actions
(At)i>1 and positive weights (w¢)¢>1 and for all 6 > 0, with
probability higher than 1 — ¢,

A * At L2 z lw2
P | Vt, |6 — 6 ||Vt‘7t_1vt SIS+U 2log(1/6) + dlog 1+T

where

t
Vi = weAsA] + Aely,
s=1

t
=> wlAA] + mly
s=1



Empirical Performances

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment X, = AJ 6% 4 7,
and assuming that ws =v7%, As = Ay™°

Let 0, =V, | (Z;l YTEALALOF + f’_lé)t*) denote a “noiseless”

proxy value for 6F



Empirical Performances

Concentration in the Non-Stationary Case
Moving back to the non-stationary environment X, = AJ 6% 4 7,
and assuming that ws =v7%, As = Ay™°
Let 0, =V, | (Zi;ll FTIALAL 0% + ﬁ/f’_lé)t*> denote a “noiseless”
proxy value for 6F
Theorem 2

Let C; = {0 c R |6 — ét_1||w_ﬂ7t__11vt_1 < Bi—1} denote the
confidence ellipsoid with

B =I5 + 0\/2 log(1/8) + dlog (1 + H)

Then, Y6 > 0, B
P(VtZ 1,«9,560,5) >1-9
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