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Stochastic Multi Armed Bandits

Stochastic Bandit Model

ν1 ν2 ν3 ν4

Setting:

K arms. Each arm associated with an unknown distribution
νa with mean µa

action At ∈ {1, ...,K} is chosen at time t based on previous
observations and rewards

reward Xt observed

Xt = µAt + εt (εt centered noise)

a? = arg maxa∈{1,...,K} µa



Stochastic Multi Armed Bandits

Specificity of Bandit Models

Sequential Learning: learning on the fly

Incomplete information: at time t we don’t know the rewards
we would have obtained by selecting a different arm

Difference with General Reinforcement Learning: choosing an
action does not impact the state of the environment



Stochastic Multi Armed Bandits

Stochastic Bandit Model: Mesure of performance

Objective: maximize the expected sum of the rewards or
equivalently minimizing the regret

Na(t): number of times the arm a has been pulled up to time t
∆a = µa? − µa: sub-optimality gap of arm a

Regret of an algorithm A on a bandit instance ν:

R(T ) = Tµa? − E

[
T∑
t=1

Xt

]

=

K∑
a=1

∆aE[Na(T )]



Stochastic Multi Armed Bandits

Strategy with small regrets

How to design a strategy with a small regret ?

R(T ) =

K∑
a=1

∆aE[Na(T )]

↪→ Not selecting too frequently the arms where ∆a > 0

Problem: The µa are unknown, so ∆a is unknown ! Need to try all
the arms to estimate ∆a’s

↪→ Exploration - Exploitation trade-off



Stochastic Multi Armed Bandits

Exploration and Exploitation

Naive idea for exploration: Select each arm T/K times

Naive idea for exploitation: Select the arm with the best
empirical mean: At = arg maxa∈{1,...K} µ̂a(t), where

µ̂a(t) =
1

Na(t− 1)

t−1∑
s=1

Xs1(As = a)

↪→ Linear regret !



Stochastic Multi Armed Bandits

Optimism in the face of uncertainty

For each arm build a confidence interval on the mean µa

Figure: Confidence interval for the different arms at time t

Act as if the best possible model is the true model

↪→ Select the arm

At = arg max
a={1,...,K}

UCBt−1(a)



Stochastic Multi Armed Bandits

UCB(α) algorithm

Under the assumption of Gaussian rewards,

UCBt(a) = µ̂a(t) +

√
α log(t)

Na(t− 1)

Problem dependent Bound [Auer et al. 2002]

UCB(α) with α = 2 and gaussian rewards with variance 1, satisfies

R(T ) ≤ 8

∑
a6=a?

1

∆a

 log(T ) + (1 + π2/3)

K∑
a=1

∆a



Stochastic Multi Armed Bandits

UCB(α) algorithm

Sometimes we prefer problem independent bounds.

ε(K,G) = {ν = (ν1, ..., νK),where ∀i ∈ {1, ...,K}, νi =
N (µi, 1),withµi ∈ [0, 1]}

Problem independent Bound

If δ = 1
n2 , the regret of UCB(α) with α = 2 on any bandit instance

in ε(K,G) is bounded by

R(T ) ≤ 4
√
KT log(T ) + (1 + π2/3)
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Linear Bandits

Contextual bandits

Use case: Recommender system

At time t a user arrives on a website with some characteristics

Several items with some characteristics could be
recommended to the user

For each item a context A ∈ Rd is build based on the user
features + item features. Those contexts form a set At
By choosing a context A the associated product is displayed
to the user

A reward Xt depending on At is then observed

Xt = f(At) + εt



Linear Bandits

Contextual bandits

How to specify f?

Linear Models: ∃θ?, Xt = A>t θ
? + εt

Generalized Linear Models ∃θ?, Xt = µ(A>t θ
?) + εt

↪→ µ is called inverse link function

In this talk we focus on Linear Models



Linear Bandits

Linear Bandits Setting

In round t a set of K actions At = {At,1, ..., At,K} is available

By selecting the context At, one observes the reward

Xt = A>t θ
? + εt

Assumption on the noise: εt are supposed to be i.i.d and
normally distributed εt ∼ N (0, 1)

Bounded Actions

Bounded θ?

Best action at time t:

A?t = arg max
a∈At

a>θ?



Linear Bandits

Difference with the Stochastic Bandit Model

In the Stochastic Bandit Model the arms are independent

The Linear Bandit model is a structured bandit problem: The
rewards of each arm are connected by a common unknown
parameter θ?

↪→ Learning transfer from one context to another



Linear Bandits

Goal

Regret Minimization

max E

(
T∑
t=1

Xt

)
⇐⇒ min E

[
T∑
s=1

max
a∈At

〈a, θ?〉 −
T∑
t=1

Xt

]

⇐⇒ min E

(
T∑
t=1

max
a∈At

〈a−At, θ?〉

)



Linear Bandits

How to choose an action At at time t to minimize the regret ?



Linear Bandits

Estimating the unknown parameter θ?

Say we already played t− 1 rounds where the actions
A1, ...., At−1 have been selected and the rewards X1, ..., Xt−1
have been collected

How to estimate θ? based on those observations?
↪→ Regularized Least-Squares Estimator

θ̂t = arg min
θ∈Rd

t−1∑
s=1

(Xs −A>s θ)2 +
λ

2
‖θ‖22

Closed form solution: θ̂t = V −1t−1
∑t−1

s=1AsXs, where

Vt−1 =

t−1∑
s=1

AsA
>
s + λId



Linear Bandits

Link with the Linear Regression

Closed form solution θ̂t = (
∑t−1

s=1AsA
>
s + λId)

−1∑t−1
s=1AsXs

For λ = 0 we find the usual estimator for the Linear
Regression (X>X)−1X>Y , where X is the matrix containing
the data of up time t− 1 and Y is the associated reward
vector



Linear Bandits

Optimism in the face of uncertainty

Acting as if the environment is as nice as plausibly possible

In the stochastic bandit model it means selecting the action
with the largest Upper Confidence Bound

In the Linear Model, the form of the confidence bound is more
complicated because rewards received give information about
more than just the arm played.

↪→ Constructing a confidence set Ct ∈ Rd that contains the
unknown parameter θ? with high probability given the
observations available up to time t− 1



Linear Bandits

Exploration/Exploitation dilemna and Linear Bandits

Greedy Policy: Chooses the action At that maximizes

At = arg max
a∈At

a>θ̂t

↪→ not enough exploration

Linear Upper Confidence Bound algorithm (LinUCB): Chooses
the action At that maximizes

At = arg max
a∈At

max
θ∈Ct

a>θ

with a particular Ct



Linear Bandits

How to choose the confidence ellipsoid ?

Let βt(δ) = λ+
√

2 log(1/δ) + d log
(
1 + t

λd

)
. The confidence

ellipsoid is defined as:

Ct(δ) = {θ ∈ Rd : ‖θ − θ̂t‖Vt−1 ≤ βt−1(δ)}

Theorem

Ct(δ) is a confidence set for θ? at level 1− δ,

∀δ > 0,P (∀t ≥ 1, θ? ∈ Ct(δ)) ≥ 1− δ

With this choice of confidence ellipsoid the previous
optimization program is equivalent to maximizing

At = arg max
a∈At

(
a>θ̂t + βt−1(δ)‖a‖V −1

t−1

)



Linear Bandits

LinUCB

Algorithm 1: LinUCB

Input: Probability δ, dimension d, regularization λ.
Initialization: b = 0Rd , V = λId, θ̂ = 0Rd

for t ≥ 1 do
Receive At, compute

βt−1 =
√
λ+

√
2 log

(
1
δ

)
+ d log

(
1 + t−1

λd

)
for a ∈ At do

Compute UCB(a) = a>θ̂ + βt−1
√
a>V −1a

At = arg maxa(UCB(a))
Play action At and receive reward Xt

Updating phase: V = V +AtA
>
t

b = b+XtAt
θ̂ = V −1b



Linear Bandits

LinUCB

Regret of LinUCB

Under the previous assumptions, with probability 1− δ the regret
of LinUCB satisfies

RT ≤
√
dT

√
8βT (δ) log

(
1 +

TL2

λd

)
= Õ(d

√
T )

↪→ Independent of the number of actions K
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Non-Stationary Bandits

Linear Bandits Setting

In round t a set of K actions At = {At,1, ..., At,K} is available

By selecting the context At, one observes the reward

Xt = A>t θ
?
t + εt

Assumption on the noise: εt are supposed to be i.i.d and
normally distributed εt ∼ N (0, 1)

Bounded Actions

Bounded θ?t

Best action at time t:

A?t = arg max
a∈At

a>θ?t



Non-Stationary Bandits

Optimality Criteria

Dynamic Regret Minimization

max E

(
T∑
t=1

Xt

)
⇐⇒ min E

[
T∑
s=1

max
a∈At

〈a, θ?t 〉 −
T∑
t=1

Xt

]

⇐⇒ min E

(
T∑
t=1

max
a∈At

〈a−At, θ?t 〉

)
︸ ︷︷ ︸

dynamic regret



Non-Stationary Bandits

Our Approach

We only focus on robust policies

With that in mind, the non-stationarity in the θ?t parameter is
measured with the variation budget

T−1∑
s=1

‖θ?s − θ?s+1‖2 ≤ BT

↪→ A large variation budget can be either due to large scarce
changes of θ?t or frequent but small deviations



Non-Stationary Bandits

Weighted Least Squares Estimator

Least Squares Estimator

θ̂t = arg min
θ∈Rd

t∑
s=1

(Xs −A>s θ)2 +
λ

2
‖θ‖22

Weighted Least Squares Estimator

θ̂t = arg min
θ∈Rd

t∑
s=1

ws(Xs −A>s θ)2 +
λt
2
‖θ‖22



Non-Stationary Bandits

The Case of Exponential weights

Exponential Discount (Time-Dependent Weights)

θ̂t = arg min
θ∈Rd

t∑
s=1

γt−s︸︷︷︸
wt,s

(Xs −A>s θ)2 +
λ

2
‖θ‖22



Non-Stationary Bandits

D-LinUCB Algorithm (1)

Algorithm 2: D-LinUCB

Input: Probability δ, dimension d, regularization λ, discount
factor γ.

Initialization: b = 0Rd , V = λId, Ṽ = λId, θ̂ = 0Rd

for t ≥ 1 do
Receive At, compute

βt−1 =
√
λ+

√
2 log

(
1
δ

)
+ d log

(
1 + 1−γ2(t−1)

λd(1−γ2)

)
for a ∈ At do

Compute UCB(a) = a>θ̂ + βt−1
√
a>V −1Ṽ V −1a

At = arg maxa(UCB(a))
Play action At and receive reward Xt

Updating phase: V = γV +AtA
>
t + (1− γ)λId,

Ṽ = γ2Ṽ +AtA
>
t + (1− γ2)λId

b = γb+XtAt,
θ̂ = V −1b



Empirical Performances

Roadmap

1 Stochastic Multi Armed Bandits

2 Linear Bandits

3 Non-Stationary Bandits

4 Empirical Performances



Empirical Performances

Performance in Abruptly-Changing Environment

Figure: Performances of the algorithms in the abruptly-changing
environment. The plot on the left correspond to the estimated parameter
and the one on the right to the accumulated regret, averaged on
N = 100 independent experiments



Empirical Performances

Performance in Slowly-Changing Environment

Figure: Performances of the algorithms in the slowly-varying environment.
The plot on the left correspond to the estimated parameter and the one
on the right to the accumulated regret, averaged on N = 100
independent experiments



Empirical Performances

Thank you !



Empirical Performances

Concentration Result in Stationary Environments

Theorem 1
Assuming that θ?t = θ?, for any Ft-predictable sequences of actions
(At)t≥1 and positive weights (wt)t≥1 and for all δ > 0, with
probability higher than 1− δ,

P

∀t, ‖θ̂t − θ?‖VtṼ
−1
t Vt

≤
λt
√
µt
S + σ

√√√√2 log(1/δ) + d log

(
1 +

L2
∑t

s=1 w
2
s

dµt

)

where

Vt =

t∑
s=1

wsAsA
>
s + λtId,

Ṽt =

t∑
s=1

w2
sAsA

>
s + µtId



Empirical Performances

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment Xs = A>s θ
?
s + ηs

and assuming that ws = γ−s, λs = λγ−s

Let θ̄t = V −1t−1

(∑t−1
s=1 γ

−sAsA
>
s θ

?
s + γt−1θ?t

)
denote a “noiseless”

proxy value for θ?t

Theorem 2

Let Ct = {θ ∈ Rd : ‖θ − θ̂t−1‖Vt−1Ṽ
−1
t−1Vt−1

≤ βt−1} denote the

confidence ellipsoid with

βt = λ
√
S + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)
λd(1− γ2)

)
Then, ∀δ > 0,

P
(
∀t ≥ 1, θ̄t ∈ Ct

)
≥ 1− δ



Empirical Performances

Concentration in the Non-Stationary Case
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(∑t−1
s=1 γ

−sAsA
>
s θ

?
s + γt−1θ?t
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Let Ct = {θ ∈ Rd : ‖θ − θ̂t−1‖Vt−1Ṽ
−1
t−1Vt−1

≤ βt−1} denote the

confidence ellipsoid with

βt = λ
√
S + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)
λd(1− γ2)
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P
(
∀t ≥ 1, θ̄t ∈ Ct
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