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The Non-Stationary Linear Model

At time t, the learner has access to a time-dependent finite set of
arbitrary actions A; = {A¢1,..., At .k, }, where Ay, € R? (with
Aprll2 < L)

They can only be probed one at a time, i.e., the learner
m Chooses an action A; € A;

= and observes only the noisy linear reward X; = A 0F +n;
where 7, is a o-subgaussian random noise

Specificity of the model
m Non-Stationarity 6 depends on t

m Unstructured action set



Optimality Criteria

Dynamic Regret Minimization

max [E (Z Xt) <= min E

T T
Zmax a,d;) — ZXt]

t=1 ac t=1
T

<= min E max(a — Ay, 0F

(Z ac€A: b >

dynamic regret



The Model

Difference to Specific Cases

B When A — I;= | ¢ o

0 ... 1

m The model reduces to the (non-stationary) multiarmed bandit
model

m If 7 = 6%, there is a single best action a*

m It is only necessary to control the deviations of ; in the
principal directions

Ay ... 0
fA = Ig@ A=+ . |, with (A)s>1 iid.
0 ... A

m e-greedy exploration (may be) efficient



Non-Stationarity and Bandits

Two different approaches are commonly used to deal with
non-stationary bandits

m Detecting changes in the distribution of the arms

m Building methods that are (somewhat) robust to variations of
the environment

Their performance depends on the assumptions made on the
sequence of environment parameters (67)¢>1

m In abruptly changing environments, changepoint detection
methods are more efficient

m But they may fail in slowly-changing environments

m We expect robust policies to perform well in both
environments



Our Approach

We only focus on robust policies

With that in mind, the non-stationarity in the 6 parameter is
measured with the variation budget

T-1
D N0r =050l < Br
s=1

— A large variation budget can be either due to large scarce
changes of 6} or frequent but small deviations
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Some references

m Garivier et al.(2011), On upper-confidence bound policies for switching
bandit problems, COLT

Introduce sliding window and exponential discounting algorithms, analyzing
them in the abrupt changes setting and providing a O(T""/?) lower bound
m Besbes et al.(2014), Stochastic multi-armed-bandit problem with

non-stationary rewards, NeurlPS

Consider the variation budget, prouve a O(T?/3) lower bound and analyze an
epoch-based variant of Exp3

= Wu et al.(2018), Learning contextual bandits in a non-stationary
environment, ACM SIGIR

Introduce an algorithm (called dLinUCB) based on change detection for the
linear bandit

m Cheung et al.(2019), Learning to optimize under non-stationarity,
AISTATS

Adapt the sliding-window algorithm to the linear bandit



Related work

Garivier et al. paper

Sliding-Window UCB algorithm

At time ¢ the SW-UCB policy selects the action that maximizes

t
_ X1(Is =i
A; = arg max Zs—tt—T-Q—I ) &log(min(t, 7))
ie{l,...K} Zs:t—7+l I _7‘ Zs t— T+1 :Z))

Discounted UCB algorithm

At time ¢ the D-UCB policy selects the action that maximizes

A, = argmax 2e=i Xl =1) o [elog((1=74)/(1 = 7))
il K} 2emy VLI =) Y vl =)

with v < 1
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Concentration Result

Assumptions

At each round ¢ > 1 the learner
m Receives a finite set of arbitrary feasible actions A; ¢ R?

m Selects an F; = o(X1, Ay, ..., Xy—1, A¢—1)—measurable action
At S At

Other assumptions

m Sub-Gaussian Random Noise 7 is, conditionally on the past,
o-subgaussian

m Bounded Actions ¥t > 1,Va € Ay, ||all2 < L
m Bounded Parameters ¥Vt > 1, ||6f]]2 < S
BVt >1,Vae A l{a, b)) <1



Weighted Least Squares Estimator

Least Squares Estimator

¢
A A
; = arg min E (X, — AJ0)% + Z2)10)I%
feR? 5T 2
s=1

Weighted Least Squares Estimator

t
p A
0,5 = argminzws(Xs - A;I'e)2 + é“e”%
OER s=1



Concentration Result

Scale-Invariance Property

The weighted least squares estimator is given by

t -1 4
b, = (Z wsA Al + )\tld) D weA X,
s=1

s=1

< 0, is unchanged if all the weights ws and the regularization
parameter \; are multiplied by a same constant «



The Case of Exponential weights

Exponential Discount (Time-Dependent Weights)

t
R . B A
0; = arg min E (X — A]6)* + 5”9”%

0cRd " —
s=1 Wi, s

Time-Independent Weights

t s
. 1 A
0; = argmin <> X, — Al0)2+ |63
p=argmind () (X = AT07+ 501

— are equivalent, due to scale-invariance



Concentration Result

Theorem 1

Assuming that 07 = 0%, for any F;-predictable sequences of actions
(At)i>1 and positive weights (w¢)¢>1 and for all 6 > 0, with
probability higher than 1 — ¢,

A A 125 w2
P (Vt; 16: — 9*||Vt‘7t_1Vt < tS+U\J 21log(1/8) + dlog <1 4 S—lws>>

v/ dpy

where

t
Vi = weAsA] + Aely,
s=1

t
Vo= widAl + pela

s=1



On the Control of Deviations in the Vt\N/,fth Norm

For the unweighted least squares estimator, the [Abbasi-Yadkori et
al., 2001] deviation bound features the [|6; — 6*||y;, norm

Here, the W‘Z_lw norm comes form the observation that

m The variance terms are related to w? which are featured in V;

= The weighted least squares estimator (and the matrix V}) is
defined with w;

Remark: When w; = 1, taking Ay = u¢ yields Vﬂz_th =V, and
the usual concentration inequality



On the Role of 1

The sequence of parameters (ji;)¢>1 is instrumental (results from
the use of the Method of Mixtures) and could theoretically be
chosen completely independently from A; and wy

But taking ju; proportional to A7, ensures that

(] Vﬂ/;_th becomes scale-invariant
® \/\/li; becomes scale-invariant

t o
m Y ._, w?/u; becomes scale-invariant

— Scale-invariant concentration inequality !



Concentration Result

On the Use of Time-Dependent Regularization Parameters

m Using time-dependent regularization parameter A, is required
to avoid vanishing regularization

. L2y w? ;
m In the sense that dlog (1 + S should not dominate

the radius of the confidence region as t increases

In the setting with exponentially increasing weights (ws = v~°)

A X wy g X )\t2
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Application to Non-Stationary Linear Bandits

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment X, = A6 4 7,
and assuming that ws =v7%, As = Ay™°

Let 0, =V, | (Z;l YTEALALOF + f’_lé)t*) denote a “noiseless”

proxy value for 6F



Application to Non-Stationary Linear Bandits

Concentration in the Non-Stationary Case
Moving back to the non-stationary environment X, = A6 4 7,
and assuming that ws =v7%, As = Ay™°
Let 0, =V, | (Zi;ll FTIALAL 0% + ﬁ/f’_lé)t*> denote a “noiseless”
proxy value for 6F
Theorem 2

Let C; = {0 c R |6 — ét_1||w_ﬂ7t__11vt_1 < Bi—1} denote the
confidence ellipsoid with

B =I5 + 0\/2 log(1/8) + dlog (1 + H)

Then, Y6 > 0, B
P(VtZ 1,«9,560,5) >1-9



Application to Non-Stationary Linear Bandits

D-LinUCB Algorithm (1)

Algorithm 1: D-LinUCB

Input: Probability d, subgaussianity constant o, dimension d,
regularization A, upper bound for actions L, upper
bound for parameters S, discount factor 7.

Initialization: b = Opa, V = Ay, V =My 0= Opd

fort > 1 do

Receive A;, compute

Pt :ﬁ5+0\/210g (%) + dlog (1+w)

Ad(1-v2)

for a € A; do

‘ Compute UCB(a) = aT0 + B, 1Va V-1V V-1qg
A; = argmax,(UCB(a))
Play action A; and receive reward X;
Updating phase: V =~V + 4, A] + (1 — )\,

V=92V + AA] + (1 - V)M

b= ’)/b + XtAt, 0=V-"1p




D-LinUCB Algorithm (2)

Thanks to the scale-invariance property, for numerical stability of
the implementation, we consider time-dependent weights

s

wt,S:’yt_ for 1<s<t

The weighted least squares estimator is solution of

t

0, = argminth_s(Xs — (As,0))* + X/210]3
9cRd s=1

— this form is numerically stable and can be implemented
recursively (but we revert to the standard form for the analysis)



D-LinUCB Algorithm (3)

And as usual, we consider optimistic arm selection in the sense that

Ay = arg anéa)fmgxx (a,0) st. [0 — 9t—1”Vt_117;‘_ﬁVt_1 < Bi_1

&

0eCy

which is equivalent to

Ay = arg Z%?Xf (a,0i—1) + ﬁt—lHGHVt—_llvt_th—_ll



Application to Non-Stationary Linear Bandits

Theoretical Analysis

Theorem 3

Assuming that .1 1||6% — 05, 1ll2 < Br, the regret of the
D-LinUCB algor/thm may be bounded for all v € (0,1) and integer
D > 1, with probability at least 1 — §, by

4138 P L2
Ry < 2LDBr + ——T + 228,V dT [ Tlog(1/y) + log (1 + ———
A 1— dX(1—7)



Application to Non-Stationary Linear Bandits

Regret Decomposition

Let 0; = argmaxyec, (As,0) and A} = argmax,¢ 4, (a, 0;)

We have (A7, 0;) < (Ay, 0;)
Thus,

max a — Ay, 07) = (A} — A, 07)

a€Ay

<
<

< ”Af”vtill Vic1Vih

=

= (A} — Ay, 0,) + (A} — Ay, 07 — 0,)
(Ai,0; — 0,) + (A7 — Ay, 07 — 0
” HV 1 Vt lvt 1”075 0t||vt71{7t:11‘/t71 + HA: -

16 — 6,

Deviation term
< 2B¢—1 with prob. 1 -6

Atll2]|60F — O4|2

+ 2L (|07 — 6|2
—_———

Bias term

(C-S)



Controlling the Bias (1)
Let D > 0,

t—1

107 = Bell2 = V= 1277314 AL (63 = 67)2

t—1 t—D—1

<UD Vi AL (0L — )l + IViTy D v AGAL (6 — 672
s=t—D s=1
t—1 t—1 t—D—1

SIS Vim T AALY 60— 05l + | D0 v AT (O 00y
s=t—D p=s s=1

t—D—1 t—l—s

< Z Vit ALAT Z 05— 05412 + Z

1A AT (6% — 6712

p=t—D s=t—D
t—1 t D—-1
< YR Y Al - =y o
p=t—D s=t—D s=1
t—1 2 D
-1 —s T * * 2L%S vy
< Dxmax(vt_l > o ASAS)|0p—ep+1||2+ R

p=t— s=t—D



Controlling the Bias (2)

m It is essential to introduce the D term and to control the two
terms differently

m The oldest terms (s < t — D) have fewer importance and can
be bounded roughly

m For the most recent terms (t — D < s <t — 1), a more precise
analysis is necessary



Optimal Asymptotic Regret

Theorem 4

By choosing v = 1 — (B /(dT))*/**, the regret of the D-LinUCB
algorithm is asymptotically upper bounded with high probability by
O(d2/33;/3T2/3) when T — 0.

"And D = log(T)/(1 — )
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Empirical Performances

Performance in Abruptly-Changing Environment
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Figure: Performances of the algorithms in the abrutply-changing
environment. The plot on the left correspond to the estimated parameter
and the one on the right to the accumulated regret, averaged on

N =100 independent experiments



Empirical Performances

Performance in Slowly-Changing Environment
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Figure: Performances of the algorithms in the slowly-varying environment.
The plot on the left correspond to the estimated parameter and the one
on the right to the accumulated regret, averaged on N = 100

independent experiments
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