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The Model

The Non-Stationary Linear Model

At time t, the learner has access to a time-dependent finite set of
arbitrary actions At = {At,1, . . . , At,Kt}, where At,k ∈ Rd (with
‖At,k‖2 ≤ L)

They can only be probed one at a time, i.e., the learner

Chooses an action At ∈ At
and observes only the noisy linear reward Xt = A>t θ

?
t + ηt

where ηt is a σ-subgaussian random noise

Specificity of the model

Non-Stationarity θ?t depends on t

Unstructured action set



The Model

Optimality Criteria

Dynamic Regret Minimization

max E

(
T∑
t=1

Xt

)
⇐⇒ min E

[
T∑
s=1

max
a∈At
〈a, θ?t 〉 −

T∑
t=1

Xt

]

⇐⇒ min E

(
T∑
t=1

max
a∈At
〈a−At, θ?t 〉

)
︸ ︷︷ ︸

dynamic regret



The Model

Difference to Specific Cases

1 When At → Id =

1 . . . 0
...

. . .
...

0 . . . 1


The model reduces to the (non-stationary) multiarmed bandit
model
If θ?t = θ?, there is a single best action a?

It is only necessary to control the deviations of θ̂t in the
principal directions

2 If At → Id ⊗At =

At . . . 0
...

. . .
...

0 . . . At

, with (At)t≥1 i.i.d.

ε-greedy exploration (may be) efficient



The Model

Non-Stationarity and Bandits

Two different approaches are commonly used to deal with
non-stationary bandits

Detecting changes in the distribution of the arms

Building methods that are (somewhat) robust to variations of
the environment

Their performance depends on the assumptions made on the
sequence of environment parameters (θ?t )t≥1

In abruptly changing environments, changepoint detection
methods are more efficient

But they may fail in slowly-changing environments

We expect robust policies to perform well in both
environments



The Model

Our Approach

We only focus on robust policies

With that in mind, the non-stationarity in the θ?t parameter is
measured with the variation budget

T−1∑
s=1

‖θ?s − θ?s+1‖2 ≤ BT

↪→ A large variation budget can be either due to large scarce
changes of θ?t or frequent but small deviations
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Related work

Some references

Garivier et al.(2011), On upper-confidence bound policies for switching
bandit problems, COLT

Introduce sliding window and exponential discounting algorithms, analyzing
them in the abrupt changes setting and providing a O(T 1/2) lower bound

Besbes et al.(2014), Stochastic multi-armed-bandit problem with
non-stationary rewards, NeurIPS

Consider the variation budget, prouve a O(T 2/3) lower bound and analyze an
epoch-based variant of Exp3

Wu et al.(2018), Learning contextual bandits in a non-stationary
environment, ACM SIGIR

Introduce an algorithm (called dLinUCB) based on change detection for the
linear bandit

Cheung et al.(2019), Learning to optimize under non-stationarity,
AISTATS

Adapt the sliding-window algorithm to the linear bandit
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Garivier et al. paper

Sliding-Window UCB algorithm

At time t the SW-UCB policy selects the action that maximizes

At = arg max
i∈{1,...K}

∑t
s=t−τ+1Xs1(Is = i)∑t
s=t−τ+1 1(Is = i)

+

√
ξ log(min(t, τ))∑t
s=t−τ+1 1(Is = i))

Discounted UCB algorithm

At time t the D-UCB policy selects the action that maximizes

At = arg max
i∈{1,...K}

∑t
s=1 γ

t−sXs1(Is = i)∑t
s=1 γ

t−s1(Is = i)
+ 2

√
ξ log((1− γ−t)/(1− γ))∑t

s=1 γ
t−s1(Is = i)

with γ < 1



Concentration Result

Roadmap

1 The Model

2 Related work

3 Concentration Result

4 Application to Non-Stationary Linear Bandits

5 Empirical Performances



Concentration Result

Assumptions

At each round t ≥ 1 the learner

Receives a finite set of arbitrary feasible actions At ⊂ Rd

Selects an Ft = σ(X1, A1, . . . , Xt−1, At−1)–measurable action
At ∈ At

Other assumptions

Sub-Gaussian Random Noise ηt is, conditionally on the past,
σ-subgaussian

Bounded Actions ∀t ≥ 1, ∀a ∈ At, ‖a‖2 ≤ L
Bounded Parameters ∀t ≥ 1, ‖θ?t ‖2 ≤ S
∀t ≥ 1,∀a ∈ At, |〈a, θ?t 〉| ≤ 1



Concentration Result

Weighted Least Squares Estimator

Least Squares Estimator

θ̂t = arg min
θ∈Rd

t∑
s=1

(Xs −A>s θ)2 +
λ

2
‖θ‖22

Weighted Least Squares Estimator

θ̂t = arg min
θ∈Rd

t∑
s=1

ws(Xs −A>s θ)2 +
λt
2
‖θ‖22



Concentration Result

Scale-Invariance Property

The weighted least squares estimator is given by

θ̂t =

(
t∑

s=1

wsAsA
>
s + λtId

)−1 t∑
s=1

wsAsXs

↪→ θ̂t is unchanged if all the weights ws and the regularization
parameter λt are multiplied by a same constant α



Concentration Result

The Case of Exponential weights

Exponential Discount (Time-Dependent Weights)

θ̂t = arg min
θ∈Rd

t∑
s=1

γt−s︸︷︷︸
wt,s

(Xs −A>s θ)2 +
λ

2
‖θ‖22

Time-Independent Weights

θ̂t = arg min
θ∈Rd

t∑
s=1

(
1

γ

)s
(Xs −A>s θ)2 +

λ

2γt
‖θ‖22

↪→ are equivalent, due to scale-invariance



Concentration Result

Concentration Result

Theorem 1
Assuming that θ?t = θ?, for any Ft-predictable sequences of actions
(At)t≥1 and positive weights (wt)t≥1 and for all δ > 0, with
probability higher than 1− δ,

P

∀t, ‖θ̂t − θ?‖VtṼ
−1
t Vt

≤
λt
√
µt
S + σ

√√√√2 log(1/δ) + d log

(
1 +

L2
∑t
s=1 w

2
s

dµt

)

where

Vt =

t∑
s=1

wsAsA
>
s + λtId,

Ṽt =

t∑
s=1

w2
sAsA

>
s + µtId



Concentration Result

On the Control of Deviations in the VtṼ
−1
t Vt Norm

For the unweighted least squares estimator, the [Abbasi-Yadkori et
al., 2001] deviation bound features the ‖θ̂t − θ?‖Vt norm

Here, the VtṼ
−1
t Vt norm comes form the observation that

The variance terms are related to w2
s which are featured in Ṽt

The weighted least squares estimator (and the matrix Vt) is
defined with ws

Remark: When wt = 1, taking λt = µt yields VtṼ
−1
t Vt = Vt and

the usual concentration inequality



Concentration Result

On the Role of µt

The sequence of parameters (µt)t≥1 is instrumental (results from
the use of the Method of Mixtures) and could theoretically be
chosen completely independently from λt and wt

But taking µt proportional to λ2t , ensures that

VtṼ
−1
t Vt becomes scale-invariant

λt/
√
µt becomes scale-invariant∑t

s=1w
2
s/µt becomes scale-invariant

↪→ Scale-invariant concentration inequality !



Concentration Result

On the Use of Time-Dependent Regularization Parameters

Using time-dependent regularization parameter λt, is required
to avoid vanishing regularization

In the sense that d log
(

1 +
L2
∑t
s=1 w

2
s

dµt

)
should not dominate

the radius of the confidence region as t increases

In the setting with exponentially increasing weights (ws = γ−s)

λt ∝ wt µt ∝ λ2t
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Application to Non-Stationary Linear Bandits

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment Xs = A>s θ
?
s + ηs

and assuming that ws = γ−s, λs = λγ−s

Let θ̄t = V −1t−1

(∑t−1
s=1 γ

−sAsA
>
s θ

?
s + γt−1θ?t

)
denote a “noiseless”

proxy value for θ?t

Theorem 2

Let Ct = {θ ∈ Rd : ‖θ − θ̂t−1‖Vt−1Ṽ
−1
t−1Vt−1

≤ βt−1} denote the

confidence ellipsoid with

βt = λ
√
S + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)
λd(1− γ2)

)
Then, ∀δ > 0,

P
(
∀t ≥ 1, θ̄t ∈ Ct

)
≥ 1− δ



Application to Non-Stationary Linear Bandits

Concentration in the Non-Stationary Case

Moving back to the non-stationary environment Xs = A>s θ
?
s + ηs

and assuming that ws = γ−s, λs = λγ−s

Let θ̄t = V −1t−1

(∑t−1
s=1 γ

−sAsA
>
s θ

?
s + γt−1θ?t

)
denote a “noiseless”

proxy value for θ?t

Theorem 2

Let Ct = {θ ∈ Rd : ‖θ − θ̂t−1‖Vt−1Ṽ
−1
t−1Vt−1

≤ βt−1} denote the

confidence ellipsoid with

βt = λ
√
S + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)
λd(1− γ2)

)
Then, ∀δ > 0,

P
(
∀t ≥ 1, θ̄t ∈ Ct

)
≥ 1− δ



Application to Non-Stationary Linear Bandits

D-LinUCB Algorithm (1)

Algorithm 1: D-LinUCB

Input: Probability δ, subgaussianity constant σ, dimension d,
regularization λ, upper bound for actions L, upper
bound for parameters S, discount factor γ.

Initialization: b = 0Rd , V = λId, Ṽ = λId, θ̂ = 0Rd
for t ≥ 1 do

Receive At, compute

βt−1 =
√
λS + σ

√
2 log

(
1
δ

)
+ d log

(
1 + L2(1−γ2(t−1))

λd(1−γ2)

)
for a ∈ At do

Compute UCB(a) = a>θ̂ + βt−1
√
a>V −1Ṽ V −1a

At = arg maxa(UCB(a))
Play action At and receive reward Xt

Updating phase: V = γV +AtA
>
t + (1− γ)λId,

Ṽ = γ2Ṽ +AtA
>
t + (1− γ2)λId

b = γb+XtAt, θ̂ = V −1b



Application to Non-Stationary Linear Bandits

D-LinUCB Algorithm (2)

Thanks to the scale-invariance property, for numerical stability of
the implementation, we consider time-dependent weights

wt,s = γt−s for 1 ≤ s ≤ t

The weighted least squares estimator is solution of

θ̂t = arg min
θ∈Rd

t∑
s=1

γt−s(Xs − 〈As, θ〉)2 + λ/2‖θ‖22

↪→ this form is numerically stable and can be implemented
recursively (but we revert to the standard form for the analysis)



Application to Non-Stationary Linear Bandits

D-LinUCB Algorithm (3)

And as usual, we consider optimistic arm selection in the sense that

At = arg max
a∈At

max
θ
〈a, θ〉 s.t. ‖θ − θ̂t−1‖Vt−1Ṽ

−1
t−1Vt−1

≤ βt−1︸ ︷︷ ︸
θ∈Ct

which is equivalent to

At = arg max
a∈At

〈a, θ̂t−1〉+ βt−1‖a‖V −1
t−1Ṽt−1V

−1
t−1



Application to Non-Stationary Linear Bandits

Theoretical Analysis

Theorem 3

Assuming that
∑T−1

s=1 ‖θ?s − θ?s+1‖2 ≤ BT , the regret of the
D-LinUCB algorithm may be bounded for all γ ∈ (0, 1) and integer
D ≥ 1, with probability at least 1− δ, by

RT ≤ 2LDBT +
4L3S

λ

γD

1− γ
T + 2

√
2βT
√
dT

√
T log(1/γ) + log

(
1 +

L2

dλ(1− γ)

)



Application to Non-Stationary Linear Bandits

Regret Decomposition

Let θt = arg maxθ∈Ct〈At, θ〉 and A?t = arg maxa∈At〈a, θ
?
t 〉

We have 〈A?t , θ̄t〉 ≤ 〈At, θt〉
Thus,

rt = 〈max
a∈At

a−At, θ?t 〉 = 〈A?t −At, θ?t 〉

= 〈A?t −At, θ̄t〉+ 〈A?t −At, θ?t − θ̄t〉
≤ 〈At, θ̄t − θt〉+ 〈A?t −At, θ?t − θ̄t〉
≤ ‖At‖V−1

t−1Ṽt−1V
t−1
t−1
‖θ̄t − θt‖Vt−1Ṽ

−1
t−1Vt−1

+ ‖A?t −At‖2‖θ?t − θ̄t‖2 (C-S)

≤ ‖At‖V−1
t−1Ṽt−1V

−1
t−1

‖θ̄t − θt‖Vt−1Ṽ
−1
t−1Vt−1︸ ︷︷ ︸

Deviation term
≤ 2βt−1 with prob. 1− δ

+ 2L ‖θ?t − θ̄t‖2︸ ︷︷ ︸
Bias term



Application to Non-Stationary Linear Bandits

Controlling the Bias (1)

Let D > 0,

‖θ?t − θ̄t‖2 = ‖V −1
t−1

t−1∑
s=1

γ−sAsA
>
s (θ?s − θ?t )‖2

≤ ‖
t−1∑

s=t−D

V −1
t−1γ

−sAsA
>
s (θ?s − θ?t )‖2 + ‖V −1

t−1

t−D−1∑
s=1

γ−sAsA
>
s (θ?s − θ?t )‖2

≤ ‖
t−1∑

s=t−D

V −1
t−1γ

−sAsA
>
s

t−1∑
p=s

(θ?p − θ?p+1)‖2 + ‖
t−D−1∑
s=1

γ−sAsA
>
s (θ?s − θ?t )‖

V−2
t−1

≤ ‖
t−1∑

p=t−D

V −1
t−1γ

−sAsA
>
s

p∑
s=t−D

(θ?p − θ?p+1)‖2 +

t−D−1∑
s=1

γt−1−s

λ
‖AsA>s (θ?s − θ?t )‖2

≤
t−1∑

p=t−D

‖V −1
t−1

p∑
s=t−D

γ−sAsA
>
s (θ?p − θ?p+1)‖2 +

2L2S

λ

t−D−1∑
s=1

γt−1−s

≤
t−1∑

p=t−D

λmax

(
V −1
t−1

p∑
s=t−D

γ−sAsA
>
s

)
‖θ?p − θ?p+1‖2 +

2L2S

λ

γD

1− γ .



Application to Non-Stationary Linear Bandits

Controlling the Bias (2)

It is essential to introduce the D term and to control the two
terms differently

The oldest terms (s < t−D) have fewer importance and can
be bounded roughly

For the most recent terms (t−D ≤ s ≤ t− 1), a more precise
analysis is necessary



Application to Non-Stationary Linear Bandits

Optimal Asymptotic Regret

Theorem 4

By choosing γ = 1− (BT /(dT ))2/3*, the regret of the D-LinUCB
algorithm is asymptotically upper bounded with high probability by

O(d2/3B
1/3
T T 2/3) when T →∞.

*And D = log(T )/(1− γ)
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Empirical Performances

Performance in Abruptly-Changing Environment

Figure: Performances of the algorithms in the abrutply-changing
environment. The plot on the left correspond to the estimated parameter
and the one on the right to the accumulated regret, averaged on
N = 100 independent experiments



Empirical Performances

Performance in Slowly-Changing Environment

Figure: Performances of the algorithms in the slowly-varying environment.
The plot on the left correspond to the estimated parameter and the one
on the right to the accumulated regret, averaged on N = 100
independent experiments
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