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Motivations

• Extending the analysis provided in Garivier and
Moulines [2011] to the contextual case

• Propose an analysis valid in both abruptly and
slowly changing environments

• Building policies robust to changepoints in the distri-
bution instead of detecting them

Non-Stationary Linear Bandits
Setting

At time t, the learner has access to a time-
dependent finite set of arbitrary actions At =
{At,1, . . . , At,Kt

}, where At,k ∈ Rd.

They can only be probed one at a time, i.e., the learner
• Chooses an action At ∈ At

• and observes only the noisy linear reward

Xt = A>
t θ

?
t + ηt

where ηt is a σ-subgaussian random noise

Specificity of the model
• Non-Stationarity θ?t depends on t

• Unstructured action set

The dynamic regret is defined as

E[R(T )] = E

(
T∑
t=1

max
a∈At

〈a− At, θ
?
t 〉

)

A key quantity for quantifying the non-stationarity is
the variation budget defined as

T−1∑
s=1

‖θ?s − θ?s+1‖2 ≤ BT

A large variation budget can be either due to large scarce
changes of θ?t or frequent but small deviations

Assumptions

• ηt is, conditionally on the past, σ-subgaussian
• Bounded actions: ∀t ≥ 1,∀a ∈ At, ‖a‖2 ≤ L

• Bounded parameters: ∀t ≥ 1, ‖θ?t‖2 ≤ S

• ∀t ≥ 1,∀a ∈ At, |〈a, θ?t 〉| ≤ 1

Weighted least squares estimator

The usual least squares estimator is defined by,

θ̂OLS
t = arg min

θ∈Rd

t∑
s=1

(Xs − A>
s θ)

2 +
λ

2
‖θ‖22,

whereas, the weighted least squares estimator is defined by

θ̂t = arg min
θ∈Rd

t∑
s=1

ws(Xs − A>
s θ)

2 +
λt

2
‖θ‖22.

It has the following closed form solution

θ̂t =

(
t∑

s=1

wsAsA
>
s + λtId

)−1 t∑
s=1

wsAsXs.

↪→ θ̂t is unchanged if all the weights (ws)s≤t and the regularization
parameter λt are multiplied by a same constant α

Concentration Result

In a stationary environment the following concentration result holds
when using a weighted least squares estimator,

Theorem 1. Assuming that θ?t = θ?, for any sequences of ac-
tions (At)t≥1 (predictable based on past actions and rewards) and
positive weights (wt)t≥1 and for all δ > 0, with probability higher
than 1− δ,

P

∀t, ‖θ̂t − θ?‖
VtṼ

−1
t Vt

≤ λt√
µt
S + σ

√√√√2 log(1
δ
) + d log

(
1 +

L2
∑t

s=1w
2
s

dµt

)
where,

Vt =

t∑
s=1

wsAsA
>
s + λtId and Ṽt =

t∑
s=1

w2
sAsA

>
s + µtId.

Extension for Non-Stationarity

We use particular weights of the form ws = γ−s and particular reg-
ularization terms λt = λγ−t and µt = λγ−2t, where 0 < γ < 1. A
noiseless proxy value for θ?t is defined as follow

θ̄t = V −1
t−1

(
t−1∑
s=1

γ−sAsA
>
s θ

?
s + γt−1θ?t

)

Theorem 2. Let Ct = {θ ∈ Rd : ‖θ − θ̂t−1‖Vt−1Ṽ
−1
t−1Vt−1

≤ βt−1}
denote the confidence ellipsoid with

βt =
√
λS + σ

√
2 log(1/δ) + d log

(
1 +

L2(1− γ2t)

λd(1− γ2)

)
Then, ∀δ > 0,

P
(
∀t ≥ 1, θ̄t ∈ Ct

)
≥ 1− δ

High probability upper bound on the regret of D-LinUCB

Theorem 3. Assuming that
∑T−1

s=1 ‖θ?s − θ?s+1‖2 ≤ BT , the regret of the D-LinUCB algorithm may be bounded for all γ ∈ (0, 1)
and integer D ≥ 1, with probability at least 1− δ, by

RT ≤ 2LDBT +
4L3S

λ

γD

1− γ
T + 2

√
2βT

√
dT

√
T log(1/γ) + log

(
1 +

L2

dλ(1− γ)

)

Algorithm
Algorithm 1: D-LinUCB
Input: Probability δ, subgaussianity constant σ,

dimension d, regularization λ, upper bound
for actions L, upper bound for parameters S,
discount factor γ.

Initialization: b = 0Rd, V = λId, Ṽ = λId, θ̂ = 0Rd

for t ≥ 1 do
Receive At, compute βt−1 =
√
λS + σ

√
2 log

(
1
δ

)
+ d log

(
1 + L2(1−γ2(t−1))

λd(1−γ2)

)
for a ∈ At do

Compute UCB(a) = a>θ̂ + βt−1‖a‖V −1Ṽ V −1

At = arg maxa(UCB(a))
Play action At and receive reward Xt

Updating phase:
V = γV + AtA

>
t + (1− γ)λId,

Ṽ = γ2Ṽ + AtA
>
t + (1− γ2)λId

b = γb +XtAt, θ̂ = V −1b

Experiments
1. Synthetic data: K = 20, d = 2, L = 1, S = 1 and θ? is

evolving over the experiment
2. Synthetic data based on a real world dataset.
We compare D-LinUCB with 1/ SW-UCB of Cheung et al.
[2019], 2/ dLinUCB the changepoint detection method from
Wu et al. [2018].

Abruptly changing environment

Fig. 1: (left) estimated parameters, (right) accumulated regret, both averaged on 100 runs

Slowly changing environment

Fig. 2: (left) estimated parameters, (right) accumulated regret, both averaged on 100 runs

Asymptotic Upper Bound

Theorem 4. By choosing γ = 1 − (BT/(dT ))
2/3, the

regret of the D-LinUCB algorithm is asymptotically upper
bounded with high probability by O(d2/3B

1/3
T T 2/3) when

T → ∞.

Conclusions and Remarks

• We assume that the variation budget is known all along
this work. In Cheung et al. [2019], a first solution is pre-
sented to relax such hypothesis.

• Providing an algorithm with an upper bound matching
the lower bound presented in Besbes et al. [2014] up to
logarithmic terms.
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