PSL%

Dorian Baudry® Yoan Russac®, Emilie Kaufmann'
L INRIA & Université de Lille ? CNRS & ENS

Efficient Algorithms for Extreme Bandits

Université
de Lille

Problem and setting

Quantile of Maxima (QoMax) estimator

Concentration QoMax

» Learner interacts with K unknown arms denoted v4, ..., vk.

* X} . obtained by pulling arm k£ at time ¢.

* The learner seeks to collect the largest possible reward.

* Minimizing the extreme regret which for a policy = that selects arm I; at

time ¢ is defined by:

R =maxE |max Xy | —E,; |max Xy, ;| .
k<K t<T t<T !

Two notions of convergence:

 Weakly Vanishing Regret: R7. = o

9 (maX/{SK E[maXtST Xk,t]) .

- Strongly Vanishing Regret: lim;_, . R7. =0.

— Inspired by Median of Means estimator.

— Learner separates the data into batches of equal sizes and compute the quan-
tile of order ¢ of the maxima over the different batches. With N = b x n data points,
the learner allocates the data in b batches of size n and:

1. find the maximum of each batch
2. compute the quantile ¢ over the b maxima.

— X/, is the QoMax of order ¢ computed from b batches of size n of i.i.d.
replications from arm k.

Theorem 1 (Comparison of QoMax). Let v, and v, be two distributions satisfying
v, = g andq € (0,1). Then, there exists a sequence (x,,), a constant c > 0, and
an integer n,, ., o such that forn > n,, ., q,

max {P(Xi],n,b < xn),P(X3 > a:n)} < exp(—cb) .

If the tails are furthermore either polynomial or exponential with a positive tail
gap, then the result holds for any c > 0 and n larger than some n. ., v, .q-

— P(X{,, < XJ,,) < 2exp(—cb): the comparison of QoMax computed with the
same parameters will not be in favor of the dominating arm with a probability that
decreases exponentially with the batch size

QoMax-ETC

Theoretical Guarantees

Challenge

» Relaxing parametric assumption on the distributions while obtaining
strong theoretical guarantees
1. Some works assume that the distribution are known (Frechet, Gumbel)
2. Other works have a semi-parametric assumption (second-order Pareto)
3. Some works with weaker assumptions but hard to obtain guarantees.

 Reducing computational and storage cost compared to existing ap-

proaches.
Algorithm Memory Time
Extreme Hunter T O(T?)
MaxMedian T O(KTlogT)
QoMax-SDA O((logT)?) O(KTlogT)

Extreme ETC O (K (logT)”)
QoMax-ETC O(K(logT)?) O(K(ogT)?)

Table: Average time and storage complexities of Extreme Bandit algorithms for a
time horizon T'.

For k < K:
Pull arm &, by x np times.
Allocate the data in br batches of size nr. Compute their QoMax, X,/

Fort =K xnp xbr+1,...,T: Pullarm I = argmax, X ror b

Theorem 2 (Vanishing regret of QoMax-ETC). Consider a bandit with v, = vy, for
k # 1. Under proper assumption, for any quantile q € (0,1) and any sequence
(br,nT) satisfying 1o§(TT) > +o0 andny — +oo , the regret of QoMax-ETC with

parameters (q, br,nr) Is vanishing in the strong sense.

QoMaX-SDA

A round-based algorithm based on three ingredients Beginning of round r:

1. Selection of a leader: arm that has been pulled
the most: £(r) = argmax; - nx(r).

_ round 7.
2. Duels between the leader and the K — 1 remain-

ing arms: comparison of the QoMax of the chal-
lenger using its entire history and the QoMax of
the leader on a subsample of its history.

« We assume that b, (r) depends only on its number -
of queries ng(r) i.e. bg(r) = B(nk(r)) for some

3. Data collection procedure.
function B.

» X/ the history of arm £ with b, (r) batches of size 4
nk(r). f(r) represents the sampling obligation at ]

* Duel: Arm k € A, (pulled arms) if (1) it wins its
duel OR (2) undersampled i.e. ng(r) < f(r).

*********

Add a batch
| while

() |

Figure 1: lllustration of the CollectData procedure at round r for a
challenger k € A, 1.

Theoretical Guarantees Numerical Results

Dominating Tail

Definition 1 (Exponential or polynomial tails). Let v be a distribution of survival
function G. (1) If there exists C > 0 and A > 1 such that G(z) ~ Cx~" we
say that v has a polynomial tail. (2) If there exists C > 0,\ € R* such that
G(z) ~ Cexp(—Azx) we say that v has an exponential tail.

Definition 2 (Dominating tail). Let G; and G5 be the survival functions of two
distributions v, and v,. We say that the tail of v, dominates the tail of v (we write
V1 = vy ) if there exists C' > 1 and x € R such that for all y > x, G1(y) > CG2(y).

Theorem 3 (Upper bound on the re-

gret of QoMax-SDA). For any quantile or| # l 1 823212?? <(§=_11//22>)
q, any v > 0, defining the parameters I T CoebA 0
of QoMax-SDA as B(n) = n” and

f(r) = (logr)7.
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Figure 2: Proxy Empirical Regret (I) and Percentage of best arm pulls (II) averaged over 10* independent trajectories for T' € {103, 2.5 x 103, 5 x 103, 7.5 x
103,9 x 10,10%,1.5 x 10%,2 x 10%,3 x 10%,5 x 10%1}.




