ENS PSLE

Problem and setting

- Learner interacts with K unknown arms denoted ν_1, \ldots, ν_K .
- $X_{k,t}$ obtained by pulling arm k at time t.
- The learner seeks to collect the largest possible reward.
- Minimizing the extreme regret which for a policy π that se time t is defined by:

 $\mathcal{R}_T^{\pi} = \max_{k \leq K} \mathbb{E} \left[\max_{t \leq T} X_{k,t} \right] - \mathbb{E}_{\pi} \left[\max_{t \leq T} X_{I_t,t} \right] .$

Two notions of convergence:

- Weakly Vanishing Regret: $\mathcal{R}_T^{\pi} = \mathop{o}_{T \to \infty} \left(\max_{k \leq K} \mathbb{E}[\max_{t \leq T} X_{k,t}] \right)$.
- Strongly Vanishing Regret: $\lim_{T\to\infty} \mathcal{R}_T^{\pi} = 0$.

Challenge

- Relaxing parametric assumption on the distributions while obtaining strong theoretical guarantees
- 1. Some works assume that the distribution are known (Frechet, Gumbel)
- 2. Other works have a semi-parametric assumption (second-order Pareto)
- 3. Some works with weaker assumptions but hard to obtain guarantees.
- Reducing computational and storage cost compared to existing approaches.

Algorithm	Memory	Time	
Extreme Hunter	T	${\cal O}(T^2)$	
MaxMedian	T	$\mathcal{O}(KT\log T)$	
QoMax-SDA	$\mathcal{O}((\log T)^2)$	$\mathcal{O}(KT\log T)$	
Extreme ETC	$\mathcal{O}\left(K(\log T)^3\right)$	$\mathcal{O}\left(K(\log T)^6\right)$	
QoMax-ETC	$\mathcal{O}(K(\log T)^2)$	$\mathcal{O}(K(\log T)^3)$	

Table: Average time and storage complexities of Extreme Bandit algorithms for a time horizon T.

Dominating Tail

Definition 1 (Exponential or polynomial tails). Let ν be a distribution of survival function G. (1) If there exists C > 0 and $\lambda > 1$ such that $G(x) \sim Cx^{-\lambda}$ we say that ν has a polynomial tail. (2) If there exists $C > 0, \lambda \in \mathbb{R}^+$ such that $G(x) \sim C \exp(-\lambda x)$ we say that ν has an exponential tail.

Definition 2 (Dominating tail). Let G_1 and G_2 be the survival functions of two distributions ν_1 and ν_2 . We say that the tail of ν_1 dominates the tail of ν_2 (we write $\nu_1 \succ \nu_2$) if there exists C > 1 and $x \in \mathbb{R}$ such that for all y > x, $G_1(y) > CG_2(y)$.

Efficient Algorithms for Extreme Bandits Dorian Baudry¹ Yoan Russac², Emilie Kaufmann¹

¹ INRIA & Université de Lille ² CNRS & ENS

P	ects	arm	I_{t}	at	

Quantile of Maxima (QoMax) estimator

 \rightarrow Inspired by **Median of Means estimator**.

 \rightarrow Learner separates the data into **batches** of equa tile of order q of the maxima over the different batch the learner allocates the data in b batches of size

- 1. find the maximum of each batch
- 2. compute the quantile q over the b maxima.

 $\rightarrow \bar{X}^q_{k,n,h}$ is the QoMax of order q computed from replications from arm k.

QoMax-ETC

For $k \leq K$:

Pull arm k, $b_T \times n_T$ times.

Allocate the data in b_T batches of size n_T . Comp For $t = K \times n_T \times b_T + 1, \ldots, T$: Pull arm $I_T =$

QoMaX-SDA

A **round-based** algorithm based on three ingredients Beginning of round r:

- 1. Selection of a leader: arm that has been pulled the most: $\ell(r) = \operatorname{argmax}_{k < K} n_k(r)$.
- 2. Duels between the leader and the K 1 remaining arms: comparison of the QoMax of the challenger using its entire history and the **QoMax of** the leader on a subsample of its history.
- 3. Data collection procedure.

Theoretical Guarantees

Theorem 3 (Upper bound on the regret of QoMax-SDA). For any quantile q, any $\gamma > 0$, defining the parameters of QoMax-SDA as $B(n) = n^{\gamma}$ and $f(r) = (\log r)^{\bar{\gamma}}.$

The regret of QoMax-SDA is:

- 1. Vanishing in the strong sense for exponential tails.
- 2. Vanishing in the weak sense for polynomial tails.

Numerical Results

0.4

Figure 2: Proxy Empirical Regret (I) and Percentage of best arm pulls (II) averaged over 10^4 independent trajectories for $T \in \{10^3, 2.5 \times 10^3, 5 \times 10^3, 7.5 \times 10^3, 7.5 \times 10^4, 7.$ $10^3, 9 \times 10, 10^4, 1.5 \times 10^4, 2 \times 10^4, 3 \times 10^4, 5 \times 10^4$

ſ	Concentration QoMax
Lal sizes and compute the quan- ches. With $N = b \times n$ data points,	Theorem 1 (Comparison of QoMa $\nu_1 \succ \nu_2$ and $q \in (0, 1)$. Then, there an integer $n_{\nu_1,\nu_2,q}$ such that for $n \ge 1$
n and:	$\max\left\{\mathbb{P}(\bar{X}_{1,n,b}^q \le x_r)\right\}$
	If the tails are furthermore either gap , then the result holds for any
fom b batches of size n of i.i.d.	$ \rightarrow \mathbb{P}(\bar{X}_{1,n,b}^q \leq \bar{X}_{2,n,b}^q) \leq 2 \exp(-cb) $ same parameters will not be in fave decreases exponentially with the
	Theoretical Guarantees
npute their QoMax, \bar{X}^q_{k,n_T,b_T} = $\operatorname{argmax}_k \bar{X}^q_{k,n_T,b_T}$	Theorem 2 (Vanishing regret of Q $k \neq 1$. Under proper assumption, (b_T, n_T) satisfying $\frac{b_T}{\log(T)} \rightarrow +\infty$ a parameters (q, b_T, n_T) is vanishin

- \mathcal{X}_{k}^{r} the history of arm k with $b_{k}(r)$ batches of size $n_k(r)$. f(r) represents the sampling obligation at round r.
- **Duel**: Arm $k \in A_{r+1}$ (pulled arms) if (1) it wins its duel OR (2) undersampled i.e. $n_k(r) \leq f(r)$.
 - We assume that $b_k(r)$ depends only on its number of queries $n_k(r)$ i.e. $b_k(r) = B(n_k(r))$ for some function *B*.

Université de Lille

lax). Let ν_1 and ν_2 be two distributions satisfying **re exists** a sequence (x_n) , a constant c > 0, and $\geq n_{
u_1,
u_2,q}$,

 $(x_n), \mathbb{P}(\bar{X}_{2,n,b}^q \ge x_n) \right\} \le \exp(-cb) .$

polynomial or exponential with a positive tail $\mathbf{y} c > 0$ and n larger than some $n_{c,\nu_1,\nu_2,q}$.

): the comparison of QoMax computed with the avor of the dominating arm with a probability that he batch size

QoMax-ETC). Consider a bandit with $\nu_1 \succ \nu_k$ for n, for any quantile $q \in (0,1)$ and any sequence and $n_T \rightarrow +\infty$, the regret of QoMax-ETC with ing in the strong sense.

